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A new class of scalar and vector-state estimators and stochastic controllers for linear dynamic
systems with additive Cauchy process and measurement noises has been developed. The Kalman
filter and the linear-quadratic-Gaussian controller have been the main estimation and control
paradigms in modern engineering. However, many practical system noises, such as radar glint, are
better described by heavy tailed probability density functions (pdf). Although the Cauchy pdf has
an infinite variance, the conditional density of a Cauchy random variable, given a linear measure-
ment with an additive Cauchy noise, has a conditional mean and a finite conditional variance, both
being functions of the measurement. Over the last three years, a theory of estimation and stochas-
tic control has been developed for the vector state linear dynamic system. The methodology for
scalar state systems entailed propagation of the conditional pdf, while the vector state case was
addressed by developing a recursion for the analytic propagation of the character function of the
unnormalized conditional pdf (ucpdf). Through a spectral transformation, the character function
of the ucpdf 1s used explicitly in the development of stochastic controllers for vector-state systems.
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1 Introduction

In many engineering, economic, telecommunications, and science applications the underlying ran-
dom processes or noises have significant volatility, which are not captured by Gaussian distributions
[1]. Rather than light-tailed Gaussian distributions, heavy-tailed distributions have been shown
to better represent these volatile random fluctuations. Examples from the practical engineering
world include radar and sonar sensor noises [2], air turbulent environment noise [3], and adversarial
motion. Our objective 1s to develop estimation and stochastic control techniques for linear dy-
namic systems with heavy-tail distributed noises, which are in the class of symmetric alpha-stable
(Sa-S) distributions [4]. In their simplified form, Sa-S distributions of scalar random variables

are characterized by their characteristic function expressed as @(v) = e ~°“1VI? where o and a
are positive parameters and V is the spectral variable. In this class, a@ = 0.5, 1,2 yield the Levy,

Cauchy and Gaussian distributions, respectively. For a € (0, 2), all the densities have infinite
variance.

In detection of a radar signal in clutter, the in-phase component of radar clutter time series
agrees extremely well with a Sa-S probability density function (pdf) with a = 1.7 [5]. For
a € [1,2] a maximum likelihood Cauchy detector, which i1s in the class of myriad filters [6],
exhibited performance that is very close to the Cramer-Rao bound, whereas a maximum likelithood
Gaussian detector deviated significantly as a varied from 2 to 1. Although numerically intensive,
the myriad filters or detectors, based on a cost criterion derived from the a-stable pdfs, show
significant improvement in detecting a signal in heavy-tailed noise over Gaussian detectors [7].
Similar performance was observed when processing data in a multi-user communication network
[8]. The shortcomings of the Kalman filter and the linear-quadratic-Gaussian (LQG) controller
when processing non-Gaussian noise data in the context of aircraft navigation [9] and radar glint
[10] suggest that new filters and controllers for heavy-tailed pdfs are required.

The robustness of Cauchy detectors discussed above, together with the deficiencies of the
standard Gaussian estimators and controllers when exposed to impulsive noises, motivated the
derivation of a sequential non-linear estimator for scalar linear dynamic systems with additive
Cauchy process and measurement noises [11,12]. Although Cauchy noises do not have a well
defined first moment and have infinite second and higher moments [13], the conditional pdf (cpdf)
of the system state given the measurement history was determined analytically and shown to have
well defined, finite conditional first and second order moments [11].

Over the last three years, we have developed the theoretical basis for constructing minimum
variance estimators and stochastic controllers for this class of systems. In our initial results for
scalar dynamic systems, the conditional pdf of the scalar state given the measurement sequence



could be generated directly [11]. Partial fractions were used to update the conditional pdf at
each measurement time. However, this methodology does not generalize when addressing dynamic
systems with a vector-state. In [12] a scalar estimator was derived by generating the characteristic
function of the unnormalized cpdf (ucpdf) in a recursive scheme. Although the two scalar estimator
formulations are similar in form, the characteristic function approach 1s somewhat simpler than
the scheme 1n [11]. It allows for a stronger result regarding the decay of the estimator parameters
with time. Moreover, it was shown that this approach can be generalized to the multi-variable
case [14, Appendix A], [15, Appendix B] and for the special two-state system [16], [17, Appendix
ClL.

As shown in [14, Appendix A], the characteristic function of the ucpdf is composed of a sum of
terms. Each term has the form of a coefficient, which is a function of the sign of a linear function of
the spectral variables, multiplied by an exponential whose argument 1s a sum of absolute values of
the same linear functions of the spectral vector. This analytic form persists through measurement
updates and dynamic propagation. Since the characteristic function of the ucpdf i1s shown to
be twice continuously differentiable [14, Appendix A], the conditional mean and the conditional
variance are determined by evaluating the characteristic function and its first two differentials as
the magnitude of the spectral vector goes to zero.

Although a dynamic programming solution to the stochastic control problem does not currently
appear tractable, a stochastic controller has been obtained for the model predictive or open-loop
feedback formulation in the scalar case [18] and [19, Appendix D], and extended to the vector
case [20, Appendix E], [21, Appendix F]. To ensure that the unconditional expectation of the cost
function exists and remains finite for Cauchy uncertainties, and that the conditional expectation
of the cost function can be determined in closed form, a new cost function is proposed. This
cost function 1s composed of products of penalty functions on the state and control that are in
the form of the Cauchy distribution. Although the conditional expectation of the cost function
can be determined from the conditional pdf in the scalar problem, for the vector-state control
problem Parseval’ s Identity is used to transform the conditional expectation of the cost function
to spectral domain. Then, the characteristic function of the ucpdf is used directly to determined
the conditional expectation of the cost function in closed form [20, Appendix E], [21, Appendix F].
Results on the performance of this stochastic Cauchy controller strongly indicate that it handles
outliers 1in the measurements dramatically well compared to Gaussian controllers. We present our
current results for the vector discrete-time Cauchy filter and stochastic controller in section 2.



2 Current Results on Cauchy Filters and Controllers

Over the last three years we have obtained impressive results for vector-state Cauchy estimation,
which are detailed 1n [11, 12, 14 - 17, Appendices A, B & C], are summarized in section 2.1 and our
novel control results, which are detailed in [18 — 21, Appedices D, E & F], are summarized in section
2.2.

2.1 Formulation and Derivation of the Cauchy Estimator

The single-input single-output multivariable linear dynamic system' is
X1 = OX + I'wy, 2 = HXy + Vg, (D

where the state vector Xk € R", scalar measurement Zx, and known matrices ® € R™", T' €
R"™! and H € R™", The noise inputs are assumed to be independent with know Cauchy pdf.
Specifically, Wk 1s assumed to be Cauchy distributed with a zero median and a scaling parameter
B > 0. Similarly, vk has a Cauchy pdf with a median of zero and a scaling parameter y > 0. The
characteristic functions of these scalar noises are assumed to be time independent and given by

where these characteristic functions have a scalar argument V. The initial conditions at K = 1 are
also assumed to be independent and Cauchy distributed. Specifically, each i-th element X;; of the
initial state vector X; has a Cauchy pdf with a zero median and a scaling parameter a; >0, 1=
1,...,Nn. The characteristic function of the joint pdf of the initial conditions, which i1s a function
of a n-dimensional spectral variable v € R", is given by

m 1 \ fl \

aivi| n n

1
(I 1
Px, V= e | =eXp - alvl =exp - plEv)| +ij(b,v) - )
1

i=1 i=1 i=

The last form was introduced for notational convenience to be used in the sequel. We used the
definitions
p! 1 _ 1
i=a, a=¢€, i=1,...,n, b ={0}, 4)

where €; is a N-dimensional i-th unity vector and {0}n is N-dimensional vector of zeros.

"The single-input single-output restriction only simplifies the presentation and appears to be easily relaxed.



2.1.1 Characteristic Function for the Un-normalized Conditional pdf

Our goal 1s to compute the minimum variance estimate of Xk given the measurement measurement

history or zx = {z1,25, - -+ ,zx} [14, Appendix A]. We begin by determining the characteristic
function for the un-normalized conditional pdf at k = 1, where the conditional pdf at k=1 is
fX121 X1,2Z1 1:21|X1 Z) |X1 fX1 X1 fv Z, — HX1 fxl X1
f X |lz; = = = . ®))
Xi11Zy A1 | 1 le 7 le 7 le Z,

The unnormalized conditional pdf (ucpdf) at kK = 1 is simply the joint pdf of the vector state
and scalar measurement and we will work explicitly with the form fv (z; — HX)fx,(X1). The
characteristic function of the ucpdf is obtained as

o o .
® W= - F x)f (z —Hx)e™MVdx =
X124 X1 1 VvV 1 1

1] reore -
9 (V=@ (mdn. (6)

1 (27_’_)“ X1 \Y%

— 00 —00

The first integral 1s a Fourier transform of a product of two functions. Using the dual convolution
property, the second integral 1s a convolution in the V domain between the associated characteristic

functions @x,(v) givenin (3) and c;x/ (), the characteristic function of fz, |x,(z; | X)) =fv(z1 —HX1),
determined 1n [14, Appendix A] as

) o o ( eTV\nﬁl
@)= ... fy(z, — Hx)eXVdx, = K(v)@y _Hne 21mo(€iPnv), @)
Nz
T . +\
Tel 1z, e C \ ( \
phere Hen /=0,Pn=1— " KW =exp ~ " ,andgy - —exp -ye' y
Hen, Hen Hen Hen,

Substitution of the N — 1 delta functions of (7) into (6) reduces the N integrals to one as

- 1

_ T B T B
! x1|zl(v) = —2}., ox, (v — H o)oy (_Lo)e*%do= ZLIT ox, (Vv — H o)y ( 0)e”% a, (8)

where @y (—0) = e Y9l

The convolution integral in (8) 1s solved in closed form. Here we assume that each element in
H is non-zero, i. e., Hej /=0, i = {1, ..., n}. (See [14, Appendix A] regarding relaxing
this condition.) To compute the integral, we define pi = ai|Hei|, pi= e v/He;, i = {1, ...,

nt, |






pn+1 = Y’

where

Mo = —2° and Mn:1 = 9. Hence, the convolution integral 1s restated and solved as

_ r~ n+1
@ =1 pluolmodo= L gy ver ©)
X112, 27_,__00 ~T ZTTR:I i gi
g . e moo
i Vgi V)= (Z1+Pr+Ygi (V)™ —(z1 —pr+Yg V)™ (10)
n+1 n+1
\,@hl(v) = Pi Sign(Ui - U'R)a yé!l(V) = — pil“i — “’RI _|_jzluR_ (11)
i 7l

As shown in this first update, the coefficient (10) is always a function of sign(-) given by y;'il(v)

in (11) where the argument of the sign(-) is always found in the argument of the absolute value

given by yéi“(v) in (11). This 1s a general property the recursion for the characteristic function of
the ucpdf for any update stage time K.

2.1.2 Conditional Mean and VVariance at k=1

The conditional mean and variance are computed by evaluating c_pxllzl(v) and its first two deriva-

tives at v = {0} or alternatively as v —> {0}n. ¢ x,jz, (V) can be shown to be twice continuously
differentiable [14, 15, Appendices A & B]. Thus, its first two derivatives can be evaluated along a
fixed direction v = Ev while letting E — 0. The pdf of the measurement variable is obtained as

n

B ) | R_10R|hR|+V
fz,(z1) = Rz (EV)E=O - T ()1 2 (12
71 + CXR||’1R|+Y
R=1

The minimum conditional-variance estimate 1S given by

(.- A\ .
1 op (Ewn ¢ [a; sign(hy) -« & sign(hn)]"
S '
J1z, 41 E=0 ,athil‘*‘V
R=1

(13)



The conditional variance is (X; = X; — X;)

E[X X |z]=

. I \ 0
. .E for 2 ailhi| +y ... =00y sign(hl)sign(hn)D[
2 1=
1+, 2 ﬁ : L a4
( _ailhil +y)’ . an n—1 o
—a,a, sign(hy) sign(hy) N ailhi| +vy -
n i=1

Note that with one measurement, the N X n conditional variance is bounded and positive definite.
Furthermore, the conditional variance is an explicit function of the measurement.

2.1.3 Propagation to k =2 and the Second Measurement Update

The time propagated characteristic function to k =2 is found in [14, 15, Appendices A & B] as

Cxo)zi (V) = x1|zl(®TV)e_B|FTV|. (15)

The convolution integral for the second measurement update 1s

i vy = L (v - HgeVlelinogy
! X2|22( ) T ‘ x2|Zl( )
)

where Z, = {Z1, Z,}. Since « x|z, (V) 1s twice differentiable, then for the linear transformation

D, ¢ x1|zl(CDTV_) is also continuous. By assuming HI' /= 0, it can be shown that the first two
derivatives of @, (V) are continuous. If HI" = 0, then e PIT VI comes out of the convolution
integral. Consequently, (p><2|22(v) does not have a continuous derivative because the derivative of

— T . . . . . .
e BITTvI is only piecewise continuous and thus there is no estimate of X 5

2.1.4 General form of <I>><k|zk (v)

In general, the convolution integral for the k™ measurement update is

- r° -

= _HT el
iz V)= 2%-, Cxelv,, (V. — H 0)e ™A do, (16)

—00



where the measurement history is zx = {Z1,...,2Zx}. It is assumed that HI" /= 0 at each time
step and that by induction « x,_,|v,_, (V) is twice differentiable. Therefore, « y, |, (V) 18 twice

continuously differentiable. It is expressed in a closed form [14, 15, Appendices A & B] as

nlk

Qe voo= gtk Kk
Yxulz (W) oDy (V) (17)
i=1
where
nk!k nk!k
YK Kk Kk kK Kk e Kk Kkl Kl
g W= aqg sien((ag ,v)) ER, Yo (V) =— - Pr 1(ar »V) | +i(by ,v). (18)

In the above, qklk € RX, pklk, aklk e R" and bklk € R" are all parameters computed recursively up
iR iR iR i
to time K. This functional form persists at every time step.

Note that this form (17) 1s also consistent with the characteristic function of the ucpdf for the
scalar system [12]

k+2 .
® (V)= ' a (k|k)+jb (k|k)sign(v) e wiklblvidadkiky, (19)
Xk |Z 1 i
k| Zk -
The parameters ai(k|k) and bi(k|K) satisfy a linear discrete dynamic equation, from which it is
shown that they converge to zero as K — i becomes large. Consequently, these decaying terms can
be removed from the sum in (19). This property should generalize for the gka ykér(v) mn (17),

i
in which one of the central goals of the proposed project is to prune the sum in (17) such that nkltk

remains bounded.

There are some simplifications that occur in the two-state estimation problem [16], [17, Ap-
pendix C]. A recursion in the terms in the argument of the exponential can be made explicit. A

basis Bk for each term in the sum is recursive as

[B (DTD B DD
k-1 [ f |

Bo= IT 0 g =8 A= 0 1. Q0)
HA HA -1 0

This basis is related to @™ € R" in the general solution (18) in that every a ™ vector is coaligned
iR iR

with a row in Bk. This bases appears minimal and thereby all terms having the same argument
of the exponential can be combined. Generalization of this result for the multivariate case will be

considered also 1n the new project.






2.1.5 The Mutlivariable Estimator

As shown 1n [14, 15, Appendices A & B], to construct the conditional mean and variance, choose

v = Ev where E > 0 and Vis a fixed direction. Assuming the condition that (air ,v) 0V (, £),

p

then
Kk klk i
sign((aig , EV)) = sign((ag ,V)) = Sg, 21)
yklk . o' Klk i kKik  klk Kk
gi (EV = - Or SR=VYgi VW, Yei (EV) = E(% (W, V), (22)

where S' is a piecewise constant and ( Sflk(\A/), V) is a constant. The pdf of the measurement history
R ei

1s determined as
K|k
n

fze 2« =@  Ev bk KIK(D) (23)
gi ygi

Xic| Zi =0 = |

The conditional mean of the state Xk 1S

I P | tnklk
R 1 o x|z« EV _ 1 gl yilk gkl y,
X« = E[xk|zk] = it 7 3(ED = e Ze i gi O) ie ) (24)
E=0
and the second moment
2" Ev ngl . ~

E[xkx" |z¢] = 1 9 x|z I S gtk v 0 T 05

K 5 o . . Y[k (V) _

P, 2 SEDOENT _ fhoze ., ' 9 e e

For the error % = Xk — X, the conditional error variance can be evaluated as E[%X |zl =
E[xka |z] — 5<k5<Tk.

2.1.6 Numerical Examples of the Vector-State Cauchy Estimator

Estimation results for a two-state system with Cauchy and Gaussian noises, related by a least
square fit, are shown in Fig. 1. For the two-state system, data can be streamed continuously by
using a finite data window, as given in [17, Appendix C]. The error is shown to be in the sixth
place, thereby insignificant. In the subfigure 1(a) we see that the Gaussian estimator error deviates
from the minimal Cauchy conditional mean error in the Cauchy simulation. Also we note that the
actual conditional standard deviation, generated by the Cauchy estimator, fluctuates dramatically
with the Cauchy noises. For the Gaussian simulation of Fig. 1(b) both the Cauchy and the
Gaussian filters perform almost identically, although the conditional standard deviation generated






by the Cauchy estimator slightly upper bounds the actual conditional standard deviation, a priori
computed for the Gaussian estimator. Numerical results for the three-state Cauchy estimator can
be found in [14, 15, Appendices A & B].
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Figure 1: Cauchy and Kalman Estimators for a stable system. Simulation parameters are: a; =
a,=0.8,y=05B8=01,H=[11], T =[0.5 1]", and the eigenvalues of ® are 0.8 % .55j.
Heavy lines are the state estimate. light lines depict the predicted standard deviation.

2.2 The Stochastic Model Predictor Cauchy Controller

A stochastic optimal control problem 1s formulated where the conditional performance index,
which 1s the conditional expectation of the cost function, i1s taken with respect to the Cauchy
conditional pdf. However, since only the characteristic function of the conditional pdf is available,
a transformation to the spectral vector is required which then leads to a closed-form expression for
the conditional expectation of the cost function. In order for the conditional performance index
to be analytic, a new cost function is chosen.



The dynamic stochastic system
Xir1 = OX+ Aug+ "Wk, 2zZx = HXk + Vi (26)

with measurement history
Zx=1zy,..., 2} Q27

is the same as (1) except for the addition of the scalar control Uk and known matrix A € R".
To determine a form of the conditional performance index, where the control enters in a more

convenient manner, the state vector i1s decomposed into a dynamic system forced by the control
and a dynamic system forced by the underlying random variables. Given this decomposition, we
show that the control has to be adaptive to only the O-algebra generated by the measurement
history associated with the stochastic part of the state decomposition.

Consider the linear, discrete-time, scalar stochastic system of (26) with the measurement his-
tory given by (27). Let Uk be adaptive to the filtration O-algebra Ok generated by the measurement
history zk. Filtration implies that the collection of O-algebras Ok have the property that if j < K,

then 0; € Ok [22]. Therefore, filtration is the evolution of the 0-algebra generated by measurement
history through time. Adaptation means that the control 1s a measurable function of events on this

O-algebra, 1.e., this ensures that the control sequence 1s causal. Now consider the decomposition
Xk = X + % where

)~Q< + Vi, (28&)
X (28b)

Here, X and % are the state and the measurement of the subsystem containing all the underlying
random variables, 1. €., Wk, Vk, and the initial condition %), which is Cauchy distributed with zero
median. Similarly, % and % are the state and measurement of a dynamic system driven by Uk
with initial condition .

The measurement history can be decomposed as zkx = Z + Z where
~Zk:{z)!"'!j(}) Z(:{Z),"',Z(}, (29)

In the following it is shown that the control is measurable on events generated by Z only.

Theorem 1. Consider the filtration o — algebra & generated by z, with the decomposition z, =

Z« + %. For zx € &x and G-, C &, % is adapted to &-; and u is adapted to ¢.

Proof. Start with k = 0. The initial state is decomposed as Xo = Xy + %, where % is a given

10



non-random parameter. The measurement decomposes as Zo = % + %, where z = HX is a given
non-random parameter and % = Z, € G. Then, Uy, which is determined by 2z, is adapted to G.
At k =1, both X = OX% + uUp and Zz = HX are adapted to @, and thus z is adapted to G.
For the measurement at K =1, 2 € @, z1 € g, and G C g. Hence, since U; is determined by
Z, =2 +17, it is adapted to g. Recursively to any K, Z is adapted to &-;. With Z € &, and
G—1 C &, Uk that is determined by Zx = Z + Z is adapted to Gk. n

2.2.1 Cost Criterion for Controller of Cauchy System

Since dynamic programming does not have a tractable solution [18, 19, Appendix D], a multi-
step model predictor Cauchy controller is proposed. The maximization for the unconditional
expectation of the cost function is
J° = max E W ka+1 Uw—l

ue~leF f 1 f I

—E max E w X? ,UP" 2z =E max Jz =E J* , (30)
urler ktl K K UrleF x
k k

where @ XE,, L{(p_l 1s given 1n (31), the unconditional expectation 1s assumed to exist and the
expectation 1S nested where the outer expectation 1s over the measurement history and the inner

expectation 1s over all other random variables. The operations of maximization and expectation
have been interchanged [23] and the conditioning on Z is justified by Theorem 1. The arguments

ofp _tpe cost function are tgl_e1 projected state and control, given as X'%:1 = {Xk1, ..., Xp} and
U ={uk,...,up—1}, U, € F, where F is the class of piecewise continuous functions adapted
to Z.

The cost function for the Cauchy dynamic system has penalty functions of the Cauchy pdf

form as
&l e A n b
w X5 LU = By )y (XinD) = _Qﬁ/ﬂf 2 e 2 - (31)
i=k i—k U "‘Ci r=1 Xiv1,r T st r

To compare the Cauchy controller to a Gaussian controller, an exponential cost function 1s sug-

gested as f 1

p—1 1 2 " 1 2

N - N -
W Xlg+l’ L,kp_l — e _Zriui . e _ZQi+1,rXi+1,r
i=k r=1

(32)

A solution to this LEG problem can be found essentially in [23], but 1t 1S explicitly given for the
scalar problem in [19, Appendix D].
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2.2.2 The Conditional Performance Index in Terms of the Spectral Variables

Since only the characteristic function of the ucpdf is available (See section 2.1.5) and thereby the
characteristic function of the conditional pdf, the conditional performance index? can be rewritten
by applying Parseval’ s identity directly [20,21, Appendex E & F] as

Ay T
Jz = u2 (2 B (o + %) T 12,06 200 d%,1 - dXn
i=k i t6i  _o _o
|
—1 \ o o
= 1 pn c/mo F Lg(p(v)-cp;(p&k(v) dv,...dv,
@mn
i=k ! ! —00 —00
I
1 pr—11 (_/rr \Jroo pool | i V\
~@em s 'jle_”P'f|Vr| vV p iz VAV dv, (33)

where L* refers to the complex conjugate of L. Given the projected form of the characteristic
function of the ucpdf (17) and that by, (v) £ (2)<_g<~p| ~Zk(v), J zcan be evaluated in closed
form. In the next section, the closed form of the conditional performance index 1s determined
explicitly for the scalar system. For the two-state system, the conditional performance index 1s
found in closed form1n [20,21, Appendex E & F].

2.2.3 Closed-Form Cost Criterion: Scalar State System

The scalar state example considers only a weight on the terminal horizon state Xp, a weight on

ui Vie {k,...p— 1}, and the terminal horizon is m = p — K. The cost criterion is

| \
1 PN am ™ 3
L= max o oow 2 e M IVI+i%v  @x,z(v) dv, (34)
] Uk EF: i=k I_'—G oo

where (19) 1s used to obtain the projected form of the characteristic function of the ucpdf c_p (V).

Xp|Zk
The cost criterion, found in closed form as
L N Lau+ 00y + (b — aso)(p + w)
o= w T A B L A (35)

2
ik i +& P i P p T W)

1s to be maximizengi with respect to Uk'o_l € F and subject to the deterministic state as propagated

asX): q)mX(—i—)’ CDm_lAUk+i—1.
i=1

2For simplicity we consider only the terminal state in cost function.
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2.3 Numerical Examples of the Scalar and Two-State Stochastic Con-
troller

To obtain insight into the properties of the Cauchy stochastic controller, the one-step one-measurement
example 1s first analyzed in section 2.3.1. Next, the multi-step numerical simulation results are
given 1n section 2.3.2, which illustrate the Cauchy controllers behavior in the presence of dominate
Cauchy measurement noise and then dominant Cauchy process noise.

2.3.1 One-Step One-Measurement Examples for Scalar and Two-state Systems

The value of the optimal control signal at k =0, i.e., uz, as a function of the first measurement
Z, is determined. Specifically, we examine the value of the optimal control signal at kK =0, i.e.,
P.(‘ZO)’ as a function of the first measurement %), that varies due to the measurement noise Vo [19,
Appendix D], while considering the one step horizon, 1. e., m = 1. The parameters for the system
and Cauchy signals are first chosen as

Od=1,H=1,a=0.1, 8=0.02, y=0.5, % =0. (36)

Initially, no penalty is introduced on the control signal, i.e., the term Cz({(u2 ¥ (Q% is removed from

the objective function in (35), i.e. {y —> ©© while the state at K = 1 is weighted with n, = .7.
Therefore, we first examine the case of one step horizon, 1.e., m = 1. Substituting these parameters

nto (35), the performance index becomes

37D

. 0.1148(4. 16672%2— L. 0163Uozo+1) + 0.03416(7.58207 +3.4153uzg — 1)

2= - 0 (z FOI6)((Ug FZ0)2 F1.22)

The optimal controller can be obtained by minimizing (37) with respect to Up. The necessary
optimality condition, 9J ; /dug =0, reduces to finding the roots of the fifth-order polynomial
0

Isu® + L,u* + ud + Lhu? + hu+ 1y =0, (38)

where

ls=1, l,=3.52, I3=(5.2315202+3.6681) Ig:(3.680622+6.630520),
l, =(0.9491204+3.2124%2+2.9623), lo = (0.07782§2 +0.3992)z. (39)

This polynomial always has at least one real root. If three roots are real, then there are two local
maximum values and the larger of the two gives the optimal control.
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Solving the polynomial numerically, the optimal control signal is plotted versus the measure-
ment % in Fig. 2(a) for { = o as well with weighting o = 1, 2, 3 and y > a. Also included is

the LEG controller where U* = —X, i.e., it is linear in z (see [19, Appendix B] for details of the
LEG model predictive controller). The Cauchy controller in Fig. 2(a) for large 7 goes toward zero.
This 1s in sharp contrast with the LEG controller, which remains linear in the measurement. This
1S a significant difference in behavior between the Cauchy and Gaussian optimal controllers that
can be deduced analytically from (38). If u*(%) is finite, the dominant term in (38) as |%| — o©

is hu*(0), or lim|z|—c U*(%) — 0. Therefore, the problem of handling outliers, which occur
for the Cauchy pdf, appears to be resolved by the Cauchy controller explicitly, and not in some
filter as has been done traditionally. Note that the controller design process explicitly uses the
parameters Y > a, 1. e., 1t should expect more impulsive measurement uncertainty than process
uncertainty. If y < a, then the Cauchy controller behaves approximately like the LEG linear con-
troller in Fig. 2(b), 1. e., it should expect more impulsive process uncertainty than measurement
uncertainty. The effect of reducing ¢y from ©© to 5 has no effect on either the Cauchy or LEG
controllers, although further reductions do have a small effect as seen in Fig. 2(a) where y > a
and approximately linear Cauchy controller for y < a as shown in Fig. 2(b). However, for y < a
a homotopy optimization method [19, Appendix B] keeps the optimum value on the ridge that
emphasizes the terminal state, rather than emphasizing small control values. This occurs even if
eventually the control results from a local optimum and not the global optimum.

~ ( o ¥y % (:oo
LW x = ==
0.05 i o {=3 20 TYER o ¢=4
: * (=2 = * (=3
I ~ CQ.:l o 522
s o/ 5 0
?
-0.05 7 -20 T S
N 3:
-10 -5 0 5 10 -30 -20 -10 0 10 20 30
2 2

@n=.7 a=01,y=05 =002 =234 0 GByn=.7,a=05y=01, =002 =2 3, 4 o

Figure 2: Scalar Cauchy and Gaussian one-step controller with parameters variations in ¢ for
y > a left and y < a right.

For a two-step prediction of a two-state stochastic controller in [20,21, Appendices E & F],
all the simulations use the same system dynamics with H=[1 1], T'T=[0.5 1], AT =[0.5 1],
m = 2, and the eigenvalues of @ are 0.8 & 0.55j. The terminal state weightings are n = [1 1],
and when control weightings are used they are ¢ = 10. The initial condition’ s scaling parameters
are given by a = [0.8 0.8], and the process and measurement noise parameters 8 and Y are either
0.5 or 0.1. The first set of examples are shown in Fig. 3. These figures show the applied optimal
control input at the first time step given the first measurement. In the two cases presented, all the
systems parameters are the same, except in Fig. 3(a) ¥ > B (i.e., more measurement than state
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uncertainty), and in Fig. 3(b) B8 > y (i.e., more state than measurement uncertainty).

The example in Fig. 3(a) shows that the Cauchy controller is nearly linear for small measure-
ments and reduces its control effort to zero as the measurement deviations become large. This is
in contrast to the LEG controller, which is linear and thus responds strongly to large measurement
deviations. This behavior in the Cauchy controller occurs when the measurement uncertainty 1s
larger than the state uncertainty. In the opposite case shown in Fig. 3(b), the measurement has
less uncertainty than the state. Here, the Cauchy controller’ s response closely matches that of the
LEG in a neighborhood of the origin, and in fact responds even more strongly than the LEG for
large measurement deviations.

The three different curves in both of these figures depict the control signals for three different
control weights: no control weight, ¢ = 10, and { = 5. As expected, heavier control weights (i.e.
smaller ) reduce the control effort. Even without any control weighting, the response in Fig. 3(a)
goes to zero for large measurement deviations. The fact that this behavior is seen when there
1S no control weighting implies that the attenuation of the control signal for large measurement
deviations is due to the cpdf and not the objective function. Moreover, this behavior is not shared
by the LEG controller that uses a similar objective function but assumes light-tailed, Gaussian
distributions.

2.3.2 Multi-Step Numerical Example for the Scalar and Two-State System

The dynamic characteristics of the Cauchy optimal controller of the scalar dynamic system, ob-
tained by maximizing the performance index in (30), are explored through several multi-step
numerical examples. The Cauchy optimal predictor control results are compared against the least-
squares equivalent LEG predictor controller and the Kalman filter [19, Appendix D]. The example
that 1s discussed in this section 1s a stable system with @ = 0.95, H = 1, and a horizon length of
m = 2. The state weight parameter 1s chosen as Np = Nk+2 = 0.7, while the control weights are
chosen as ¢ = 8, i = K,k + 1. The noise parameter values B and y are interchanged to see how
the controller performance changes when it 1s designed for a large measurement noise impulse in
contrast to when it 1s designed for a large process noise impulse.

The simulations results are depicted in Figs. 4 where the system parameters are given. First,
for y =0.1 and B = .02, depicted in Fig. 4(a) when the noises are small, the Cauchy and the LEG
controllers exhibit similar performance. However, they behave rather differently when a large
measurement pulse occurs. A measurement noise pulse does not represent a state deviation and
thus, for proper regulation, the controller should ignore that measurement. The Cauchy predictive
controller, designed for y > B, is able to make this distinction, whereas the LEG predictive
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Figure 3: Optimal control vs the measurement for the first time step.

controller reacts linearly to all the pulses and does not differentiate as shown in Fig. 4(a). At time
steps kK = 2 and k = 13 process noise pulses occur, and although both controllers react to them
and are able to overcome this deviation, the Cauchy controller does so much quicker than the LEG
by applying a much larger control effort. The Cauchy applies a larger control because its gain for
small measurement values are higher than that of the LEG. Conversely, when a large measurement
pulse occurs at k =51, the Cauchy controller ignores it, applying almost zero control, whereas the
LEG controller applies a very large control input that causes the state to deviate away from zero,
which then required additional control effort to correct. This way the Cauchy controller manages
to avoid unnecessary actuation and thus maintains the system performance. When y < B, the
behavior of the Cauchy and LEG controller is similar, as shown in Fig. 4(b). This demonstrates
the same linear behavior as was seen 1n Fig. 2(b).

In [20, 21, Appendices E & F], the two-state, multi-step example uses the same dynamic system
as the two-state, two-step, single measurement example where m = 2 and ¢k = {k.1. In Fig. 5(a),
there 1s more uncertainty in the state measurement noise than in the process noise. When large
measurement deviations occur (such as at k = 52), the Cauchy controller’ s effort is very small even
though there 1s no weighting on the control inputs. In contrast, the LEG controller responds with a
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Figure 4: 2-step Cauchy and Gaussian controllers with 8 and y parameters interchanged.

large control effort that drives the states from their regulated state of zero. When the measurement
noise density parameter dominates the process noise density parameter in constructing the Cauchy
controller, the effect of measurement outliers 1s mitigated, while still responding to state deviations
due to process noise. In the Gaussian simulation, shown in Fig. 5(b), both controllers perform
1dentically.

3 Conclusions

The current results of state estimation and control in linear, discrete time systems with addi-
tive Cauchy noises are summarized in References [11,12,14 — 18,20,21,24 - 28, Appendices A-F].
Although closed-form solutions, especially for the state estimation problem, are presented in those
publications, they entail a significant numerical complexity that may limit their real-time applica-
tion 1n practical engineering systems.

The estimator complexity stems from the representation of the associated characteristic func-
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Figure 5: Cauchy and Gaussian controller performance for two-state system.

tions of ucpdf as a continuously growing sum of terms, each of which depends on the entire history
of the measured data and intermediately computed parameters, as can be seen in the references
and summarized briefly in Section 2.1.5. For scalar and two-state systems, compact and simplified
representations were found to represent those characteristic functions [12, 16]. Moreover, for the
scalar system case, efficient methods were found to prune the terms of the characteristic function
while bounding the error of the approximated result [12]. However, by using a fixed data window,
measurement data can be streamed continuously with insignificant error for the two-state system
[17, Appendix C]. Although the determination of the controller requires a numerical optimization
procedure [20,21, Appendix E & F], the Cauchy controller demonstrates how to handle outliers,
an 1ssue that has plagued designers who use Gaussian control algorithms.
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MULTIVARIATE CAUCHY ESTIMATOR
WITH SCALAR MEASUREMENT AND PROCESS NOISES
MOSHE IDAN* AND JASON L. SPEYER'

Abstract. The conditional mean estimator for a n-state linear system with additive Cauchy measurement and process noises
is developed. It is shown that although the Cauchy densities that model the initial state, the process noise and the measurement
noise have undefined first moments and an infinite second moment, the probability density function conditioned on the measurement
history does have a finite conditional mean and conditional variance. For the multi-variable system state, the characteristic function
of the unnormalized conditional probability density function is sequentially propagated through measurement updates and dynamic
state propagation, while expressing the resulting characteristic function in a closed analytical form. Once the characteristic function
of the unnormalized conditional probability density function is obtained, the probability density function of the measurement history,
the conditional mean and conditional variance are easily computed from the characteristic function and its continuous first and second
derivatives, evaluated at the origin in the spectral variables’ domain. These closed form expressions yield the sequential state estimator.
A three-state dynamic system example demonstrates numerically the performance of the Cauchy estimator.

Key words. Cauchy probability density function, non-linear estimation with heavy tailed noises, characteristic functions

AMS subject classifications. 93E11, 62112

1. Introduction. In many engineering, economic, telecommunications, and science applications the underly-
ing random processes or noises have significant volatility, which are not captured by Gaussian distributions [12].
Rather than light-tailed Gaussian distributions, heavy-tailed distributions have been shown to better represent
these volatile random fluctuations. Examples are radar and sonar sensor noise [6] and air turbulent environment
noise [9]. Our objective is to develop a filtering technique for linear dynamic systems with heavy-tailed distributed
noises while using a particular case of symmetric alpha-stable (Sa-S) distributions [10]. Inits simplified form, Sa-S
distributions of scalar random variables are characterized by their characteristic function @(v) = e~ “IvI* where
0 and a are parameters and V is the spectral variable. In this class, @ = 1 and 2 yield the Cauchy and Gaussian
distributions, respectively. For a € (0, 2), all the densities have infinite variance.

In the detection of a radar signal in clutter, the in-phase component of radar clutter time series agrees extremely
well with a Sa-S probability density function (pdf) with a = 1.7 [13]. For a € [1, 2] a maximum likelihood Cauchy
detector, which is in the class of myriad filters [1], exhibited performance that is very close to the Cramer-Rao
bound, whereas a maximum likelihood Gaussian detector deviated significantly as a varied from 2 to 1. The
myriad filters or detectors, based on a cost criterion derived from the a-stable pdfs, show significant improvement
in detecting a signal in heavy tailed noise over Gaussian detectors [8], although they are numerically intensive.
Techniques for enhancing the estimation robustness performance of Gaussian filters attempt to mitigate the effect
of outliers due to impulsive measurement and process noise. These estimation techniques adjust to the measurement
data by incorporating ad hoc heavy-tailed densities into the estimation scheme. For example, [?] robustifies the
Kalman filter by replacing the Gaussian densities with heavy-tailed symmetric Student’ s-t densities, which behave
much like the Gaussian about their medians. Robust filters with data-dependent mean-square error recursions [7]
have similar properties. Fortunately, our recursive estimator, without approximation, contains these robustness
features and have motivated the derivation of a sequential non-linear estimator for scalar linear dynamic systems
with additive Cauchy process and measurement noises [3,4]. Although Cauchy noises do not have a well defined
first moment and have infinite second and higher moments [5], the conditional pdf (cpdf) of the system state given
the measurement history was determined analytically and shown to have well defined finite conditional first and
second order moments [3].

Unfortunately, the recursion scheme for generating the cpdf directly for a scalar linear system [3] does not
generalize for the vector state. In [4] a similar estimator was derived by generating the characteristic function of
the unnormalized cpdf (ucpdf) in a recursive scheme. This approach is somewhat simpler than the scheme in [3],
allows for a stronger result regarding the decay of the estimator parameters with time, and can be generalized to
the multi-variable case.

The generalization of the characteristic function of the ucpdf approach [4] to the multi-variable case is the essence
of this paper, which is organized as follows. We begin by formulating the estimation problem for a n-dimensional,
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discrete-time, linear system forced by scalar Cauchy process noise and a scalar measurement with additive Cauchy
measurement noise in section 2. In section 3 we show how the characteristic function for the ucpdf of the system
state conditioned on the measured history is computed sequentially for the first two measurement updates and
a time propagation step. This sequential exposition suggests the general form of the characteristic function for
the ucpdf given in section 4. Fundamental to obtaining this sequential estimator is the closed form solution to a
convolution integral that is given in Appendix B and used for the measurement update at each time step. In section
5 we prove that under a mild condition on the system input and output matrices the characteristic function of the
ucpdf is twice continually differentiable. This yields closed form analytical expressions for the minimum variance
estimate of the states and the estimation error conditional variance. In section 6 a three state system is used to
1llustrate the performance of the sequential estimator. We offer some concluding remarks in section 7.

2. Problem Formulation. We consider the single-input-single-output multivariable linear system
2.1) Xk+1= OXk+ "W, Zk = HXx + Vv,

with state vector Xk € R", scalar measurement zk, and known matrices ® € R™" T € R™ and H € R™", The

noise inputs are assumed to be independent Cauchy distributed random variables. Specifically, Wk 1s assumed to
be Cauchy distributed with a zero median and a scaling parameter 8 > 0. Similarly, Vk has a Cauchy pdf with a
median of zero and a scaling parameter ¥ > 0. The characteristic functions of these scalar noises are assumed to
be time independent and given by

(2.2) ow v =e BVl @y v=erIVl

These characteristic functions have a scalar argument V. The initial conditions at K = 1 are also assumed to be
independent Cauchy distributed random variables. Specifically, each i-th element X1i of the initial state vector X1

has a Cauchy pdf with a zero median and a scaling parameter @i > 0, i =1,...,n. The characteristic function of
the joint pdf of the initial conditions, which is a function of a n-dimensional spectral variable v € R", is given by
T ai|Vi| ( n \ f( n 1 1 \ 1 1
(2.3) Px, V = e =exp - alvil =exp - pl(@v)| +i(by,v) .
i=1 i=1 i=1

The last form was introduced for notational convenience to be used in the sequel. We used the definitions
(2.4) pl=a, al=e, i=1,...,n, b'={0},
i i 1

1
where €i is a N-dimensional i-th unity vector and {0}n is N-dimensional vector of zeros. In fact, any distribution of
the initial conditions can be handled by the derived estimator as long as its characteristic function is of the form
given in (2.3) with any vectors ali and bi, and parameters pli >0,

The goal is to compute the minimum variance estimate of Xk given the measurement history or
Y= 21 Z2 - Zk .

3. Initial Derivations. The method proposed to solve this Cauchy estimation problem entails propagating the
characteristic function of the cpdf of the state vector given a history of measurements. Evaluating this characteristic
function and its derivatives at the origin of the spectral vector v will provide the desired state estimate and its error
variance. The characteristic function is initiated by the expression given in (2.3). It changes during a measurement
update when a new measurement is processed, and during time propagation affected by the process noise input. We
begin by showing how this characteristic function is computed for the first two measurement updates and one time
propagation step. This will suggest the general form of the characteristic function and hence the general estimator.

3.1. Measurement Update at k = 1. Given the initial characteristic function of the system state (2.3), we
are interested in computing the characteristic function of the initial state X1 conditioned on the initial measurement
z1 = HX1 + v1. The desired characteristic function is given by

oo (o]

T
G.D Px,1z, V = fx1121 X1|z1 eV *dxy,

where the measurement history is simply Y1 = 21 and the cpdf fx,|z, X1|z1 is computed as

fX121 X1,21 le|><1 Z1|x1 fx, X1 fv z1 —Hx1 fx, X1

. f X1[z1 =
(3 2) X121 1| 1 le Zl = le Zl - fZ;L Z;
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with
(3.3) fz, z1 = e Txgzy X1,z1 dxa = o fy z1 —Hx1 fx, x1 dxi.
Hence,
1 < ° jvTxa
(3.4) Pxijzs V = fv z21—Hxi fx, x1 e dxu

The subsequent derivations can be simplified by avoiding the division by fz; z1 in (3.2) and (3.4). Thus we
use the unnormalized cpdf and its characteristic function defined by

3.5 f Xt|z1 =fx 1z x1|lzs fz z1 =fv z1 —Hx1 fx x1 ,
X1|Z1 11 1 1

and

3.6) Cxalze V= iy zi—Hxa fx, X1 e “dxa.

When the actual (normalized) functions are neede for, e.g., co, utmg tl}e state estHnates ?1 normalization factor
can be easily determined by evaluating (p 1121 atv= z 71 = iz %‘
1 1 1

The integral in (3.6) resembles a Founer transform of a product of two functions. Using the dual convolution
property of Fourier transforms, it is shown in (A.7) of Appendix A that for a scalar measurement Z1, and thus a
scalar function fv - , the integral in (3.6) can be expressed as

@7 Uiz vy = m Ox v—HTQ @v —n ei®dy,
where @v - and @x, - were defined in (2.2) and (2.3), respectively. Using these expressions, the integral in (3.7)
can be restated as
B oo LE G \ _ _ |
3.8) ¢ v = exp — PU@,v=Hn)| +j(blv=H"n)=vInl+jz n dn
X11Z1 Wini i i 1 1
—oo i=1
N fC \ |
=&Y exp - pll(alv)—Ha'n| -—ylnl+j z—Hb n dn.
o o 0 i 1

This integral is solved using the methodology presented in Appendix B.1. For that, the coefficients of n in
the absolute value term of (3.8) have to be normalized to one. Clearly, this cannot be attained if some of these
coefficients are zero. Hence, first we assume that

(3.9 Hal/=0,i=1,...,n
f I
or equivalently that all the elements of H = h1  h2 -+ hp are nonzero. With this assumption, (3.8) is restated
as
oo \

- i(bt, C +1 .
(3.10) g v = T L WV nwicn

X121 T T (G A

—00 1=

where we defined

(3.11a) pi=p*Ha'l, Hi = al/(Hab), i=1,...,n,
1 1 1 1

(3.11b) Pret = ¥, tner = {0 }n, {1=21 —HbY.
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Using the results in (B.9) and (B.10), while associating & and z in the later with (Wi, V) and {1, respectively,
the integral in (3.10) is evaluated as

O O O O
_ [ n+l U 0 n+1 . 0
G o v _ait T s wv) e JENTRR TRV T TN

" X11za ! i 0 ( — i )0 O- I - i )l (i )o

i=1 =1 =1

/=i

+1 —j
_ " gtlt yih /= 1)1

i gi (v) ©€xp Yei wv)

where the coefficient functions l.ll(-) are given by

1 . -1
(3.13) Myt = ¢ eyt ic o+ytw
i gi N 1 Y - 170 g
217
The arguments of gilll(-) and the exponents in (3.12) are
n+1 n+1
(3.14a) W= psen((M —Hi,v) = psen((ai,v)),
=1 =1
\,lll n+1 . . n+1 .
(3.14b) e == p Il -V +i(Gui+bv)=— " p (@, v)]|+jbi"v),
=1 1 =1
/=i /=i
where, while using (3.11), for £ /=i we have defined
“at al i/=n+1
St Hal og/ens at
1 1)1 il—l—bl i/=n+1
- _ @ z1 — Hbj1 1
| o
(3.15) a =p — W= DF?&L iI=n+1, bi =Cll_,li+b1=[l Ha,
1 .
D[_ aj 3 b, i=n+1
mf £E=n+1

To simplify the notation and subsequent derivations, specifically to avoid the £ /= i exclusion in the sums
of (3.14), the elements in these sums are renumbered sequentially, i.e., £ € [1, n] for each i-th term. The

1 . To accommodate subsequent derivations, the coefficients p 1in

1e||1( ): we w111 use q1|1 11
parameters Z and pi in (3.13) will be denoted by Cill and di , respectively. Finally, the number of terms in the
sum of (3.12) will be denoted by n, U + 1, while thlellnumber of elements in the sums of (3.14) will be marked
by n i = Nn. Although at this stage all the counters Ng; are the same, as will be seen in the sequel, they may be
dlfferent for dlfferent I s. Therefore we have introduced i-dependent element counters n_.~. Moreover, although the
counters Ny i1 and nel seem to be related to each other (the former is N+ 1 while the latter are n), they will exhibit
irregular changes and thus were introduced separately.
With these notations and renumbered parameters and vectors, ‘_le| z v is restated as

renumbered vectors ai will be dgnoted by a
the sums of 1

(3.14) will be marked differently for y ( )Yand Y for the former and P; for the latter. The

1/1

(3.16) e v =" gy exp y! v |
X11Z1 i g|
i=1
where
(3.17) i 1|1(V) = UL, gl 1l -1 el gttty -1
and g J + +y2 () J 12

T i



gi
%ll 11 11 1)1 "o 1)1 11
(3.18) yiwm= dlen @) L yTm== plIE V).

=1 =1
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It is interesting to note that the initial characte PSUC fuqctlon n (2.3) 1s also expressed in a form identical to that
given in (3. 16) The initial parameters are: n = 1 (and thus there are no y arguments); ne = n; the

parameters p and the vectors a1 and b1 are glven n ( 4).
3.1.1. SpeCIaI Case: Hali = 0. If one or more of the Hali-s are zero, 1.e., one or more of the entries of

1
the matrix H are zero, then the corresponding e~ P: [CW7] terms would come out of the integral in (3.8). However,
the other mampulatlons used to solve this integral Would remain the same. For the sake of simplicity, this is
demonstrated by assuming that only Ha1 = (0, while Ha /=0fori=2,...,n. In this case, (3.8) and (3.10) are

restated as

_ Pttty T O \ |
G190 exp - py|(alv) - Halnl —ylnl +j z— Hbi n dn
am —oo i=2
1 l(l " (1 ) o ( n+1 \
—p1l(a,v)|+j(by,Vv, .
=t 1271 ' exp - ei | (W, v) —nl+jin an,
o i=2
where the parameters pi, Mi, i = 2,...,Nn, and {1 were defined in (3.11). The integral in the above is solved using
the same technique as in the case when the condition in (3.9) holds, yielding the result
3.20 - ot Mo V)) ex V),
(3.20) BV =e R gy e ()
i=2

where g_lll(') are given in (3.13). The arguments of g_lll(') and the exponents in the sum of (3.20) are
1 1

n+1 n 11 11
(3.21a) yeiv)=  psgn((ai,v)= g segn (a,v) ,
— i i i
/=i
n+l 11 "1 oan 11
(321b) yEi(V): - P I(ai 1V)| +J(b ) !V) == p A (a A ,V) +J(b _,V),
- 1 - 1 1 1
/=i

with vectors @ and bi defined in (3.15). When ordering the elements sequentially, thus avoiding the £ /= i

exclusions in the sums of (3.21), we obtain the parameters qlll, p1|1 and vectors a1|1 and b*'*,
,The result in (3.20) can be cast in the form of (3 16) by the followmg modlflcatlons First, the exponent
e AL outside of the sum is combined with the exponents in the sum by modlfymgl the argument ?/el(V) 1.e.,

adding one more element in the sum of (3.21b). This element is denoted by —p4 (al ,V) with pl = p and
11
al = ai for all £. Consequently, the sum that defines the argument to the exponents will have n elements. Second,

for consistency, the sum of (3.21a) i1s expanded by one by introducing q = 0 for all £. Finally, the terms in the
sum of (3.20) are ordered sequentially, starting from one. As a result, §0x1|zl v for this special case 1s expressed
in a form identical to that of (3.16) when condition (3.9) holds, with the only difference being that n' t 1s reduced

1|1 . i .
by one to N 12— n. The manipulations above can be extended to the cases where more than one Ha? is zero, hence

t -
further reducing the number of terms used to express @, |z, v

3.2. Time Propagation to k = 2. Given the time propagation equation X2 = ® X1+ 1" W1 we want to compute
the characteristic function of the ucpdf of X2 given zi. Using the results of Appendix C, (C.4), that characteristic
function is given by

- Jill
(3.22) e v = OTv ow TTv =" g"" y"(@Tv) exp y"(@Tv) e FITYI
Xz2|Z1 X112y i gi ei
i=1
1/1
_n gt yiit 1)1

i g (@Ty) exp y (OTv)=BI(T,v)] .

i=1

The last expression in (3.22) can be expressed in a form that is similar to the one given in (3.16). For that, we
make the following observations that lead to the definitions of new and time propagated parameters and vectors.
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1. (_px 5 v 1s expressed with the same number of terms as (B 2 v . Hence, we define n?lt =t
t t
2. Thé ct)efﬁcient functions g l ("), or spec1flcally the parametérs | 1:1 and d 11 s remain as in (3.17), 1e.,
2|1 11 21 11

Ci =¢c ,d =d; ,ie [1 nt ]. There are only changes in the arguments of gI ('). For notational

consistency we will denote the updated coefficient functions g il (-) while remembering that

(3.23) 9_2'1(-)=gl_'1(-)-
3. The parameters q ) Y and p1|1 used to define ylg| 1( -) and ylll( ) in (3.18) are also unchanged, i.e., p pll?,

_ ! 1! 11 i i

ql _ql ) 1 € [1 |1 ]7 £§|1[17""nei ]'. . . 1|1 1|1

4. The arguments of y ( ) and y ( ) are multiplied by @7, hence affecting the vectors a “and b™' as
1 1
i " i i ”
(3.242) \/&;'KCDTV) — qél.llSgn (ai ,@T v) q:-|1sgn (CDailll’ v) qi2|1sgn (ai V) o,
=1 =T =T
n¥t -y
(B.24b)  en(@Tv) == pH(0allt,v)|+j(dbltv) == )@, v)| +j(b2t,v).
=1 =1
Here we used the definitions a2* = d)alll b2|1 CDb1|1 iel,. le] £el[l,. 1|1]
i t

5. The exponents are ag PCUOH of an addltlonal elen&qr}t ,3|(1T V) | Hence, the number of elements that define
the new argument y ( ) increase by one, 1.€., +1. The parameters and vectors that define these

211 . .
new elements are p 2,1 =P, a n2it = =TI,i¢€ 1, e HI ]. For consistency, and to facilitate the subsequent

n}.‘fxppulatlons of the charactensﬂc function, the number of elements in ﬁ@e sum of the new gﬁguments

yg| (-) are also increased by one, while introducing the zero parameters q fh = =0,i€[l,...,n ]. Hence,
with these new elements, the arguments y2 ! 1( -) and y ( ) are defined as

n##t
(3.252) = ¢?sen (agiv)
=1
y2I1 " &t 211 211 21
(3.25b) i V=Yg (OTWV)=BI(T.V)|== Pi |(& ,v)|+i(b; ,v).

Using all the time propagated and newly defined parameters, (3.22) is restated as

- ni 2|1 |
(3.26) P v =4 (V) exp y vy ,

X221 i gl

i=1
where
3.27) g 2[1 2|1(V) L 201, 42]1, 2|1 -1 . 2|1 211, 211 -1
i gi 5 G ATy T — e —dT Y ()

with arguments Y 2[1 (-) and y 2|1 (+) given in (3.25). Overall, we have obtained a form which is similar to the one in

(3.16), determmed after the f1rst measurement update in the previous SLﬂbS@CtiOD. 2
Remark 3.1. It may so happen that for a given i several vectors at with £ ¢ [1,... ] could be co- ahgned

For example if there are two such vectors a?'* and a2|1 £ /= £ they ‘are related by a non-zero constant 6,
i
=6 azill, which implies that
(3.282) sgn (a’!,v) =sgn(6)sgn (az'1 v)
I2|1 2|1

(3.28b) Ia- V)l =18 |- 1(a V)l
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Consequently, in the sums of (3.25) such two terms can be combined as

(3.292) 2isgn (@Lv) 1q’llsgn (ah,v) =d|'sgn (api,v)
p2|1 2|1 21 2)1 21 21

(3.29b) i (& v)+p-1(a-v)=p (& )|
with
(3.300) Efll 21 2|1

.ova y —q. —

éll—q.aﬁsgn(gll)q.
2]1

thus reducing ng;~, the number of elements in the sums of (3.25), by one. If there are more than two co-aligned

vectors aizll, or if there are several groups of such co-aligned vectors, the above procedure can be repeated for all
those occurrences thus further reducing n28||1
In the sequel we will assume that all co-aligned vectors were combined. This minimizes the number of elements

needed in (3.25) and contributes to the efficiency of the resulting estimator.

3.3. Measurement Update at k = 2. In this subsection we perform a second scalar measurement update at

k = 2 using the second measurement z2 = HX2 + V2. Specifically, we will compute <_P><2 ly, V,wherey2= z21 z2 .
Using the general convolution results of (A.7) in Appendix A,

_ [e%) _ ) 1 [e%) _
Z2n — -
G3D v,y — g iz veHTR gy ST EFIIN= o V- HT exp |+ jzen i,
where from (3.26)
- 2/1
(3.32) 1) v=HTp = g V' v—HTh exp vV v=—HTR |
X21Z1 i gi ei
i1
g I
i (0isgivenin (3.27), and from (3.25)
n%;
(3.332) y;'il v—H"n = qzillsgn (azi'l,V—HTn) ,
=1
2
(3.33b) Yyt v—HTp == pM@" v —HTn)| +j(*" v —HTn).
el 1 1 1
=1

The integral in (3.31) is solved using the methodology presented in Appendix B.2. For that, the coefficients
of N in the absolute value and sign terms in (3.31), or more specifically in (3.33), has to be normalized to one,

assuming those coefficients are not zero. Hence, we first assume that Haz'il /=0, V i,£ The case that several

m311=0 will be addressed at the end of this section. Next, we perform the following manipulation and introduce
the intermediate variables

211 T 2|1 21 211

(3.342) (3 ,v=H n)=(a ,v)—Ha n=Ha (W, v)-m,
(3.34b) eisen (@hv—H™) = sen((w.v)-n),

211 21 T 2]1
(3.340) Pl v=H m)l=p (V) -1l
where /
(3.35) W= a2|_1 Hazll_ ,Qz!lzqz!lsgn Ha2lt ,p2|_1:p2|_1|Ha2|.1|.

1

i i i i i i i
Using these variables, (3.33) is restated as

2/1

nel
(336&) y;lil vV — HTI’] = inllsgn ((l—ll ,V) — r’)’
=1
n2, _
(3.36b) YAt v=HTn == T v) —nl+i (07 v) —HDMn

=1



8 M. IDAN AND J. L. SPEYER

Substituting (3.32) and (3.36) into (3.31) yields

[ 2

2L .

i i [
=1

G3ne . _ 1
X2|Y2 ~ o

— 00

O

Q_lesgn((u V) =n

_nd? B
xexp = oM (w,v) —nl+J (0",v) = Hb"n Cexp —yinl +jzan dn

=1

Combining the exponents, while interchanging the integral with the summation, (3.37) is restated as

2/1
n#t jb2/,v) g +1
i 21

& ;

— 00

G38) v, |, _

i= =1
In the above we defined the new parameters

ot =y, W

(3.39)

In addition, for consigtﬁncy, the ni

one by introducing Q°'" =0, E=n"""+ 1.
1

ei

Each integral in (3.38) has the form of the general integral in (B.11), when associating §€ and z with (Wi , V)

Qzllsgn((ui V)= expl-

= {0}, =22 —HD?" £

rﬂber of the elements in the argument of the functions

0 0

n2/t+1
=1
1

2
=N
ei

+1.

and i, respectively. Their solution was derived in (B.15) of Appendix B and is given by

0 O
_ 2/1 2/1 2/1
Ne n2&1+1 nei+1 2|l ei+1 2|l O
(3.40) @ b2/t 212 [ Q™ sgn( Ho,v)), P~ Tsgn( MoV
Xolv, v = el Oim [ i (“i —"im ) i (ui = im ))[
i=1 m=1 =1 =
=m 0 /=m
2/t 2/1 n2/1+1
[ et A D ng et
xep = PP = pim V)| +iG(Him V) | = 22 22 Y2 (v exp ¥ (v)
O i 0 glm yglml gim2 eim
=1 i=1 m=1
/=m
The coefficient functions gizn['2 (-, -) that have two arguments are given by
O 2|1
211 22 (V)+Q 211 (22 (V)= Qo -
(341) g.2|2 y2|‘2 (V),y2|-2 (V) — 1 0 g ygiml im _ gi yg|ml II’L‘I D.
im giml gim2 2 212 21t 212

e 211
o i TP im +ygim2(v)

i§i — Pim + ygimZ(V)

The arguments of these coefficient functions and those of the exponents in (3.44) are given by

nzitl n?te1
G420 gimi(V= QM sen (Wi — Mim, v)) = Q*sen ((aim ,v),
=1 =1
/=m /=m
nzitl n2/t4+q
(V)= 211 - _ 201 _
(3.42b) \/8itn2 o, sgn (i Him, V) = p; sgn ((am , v)),
=1 =1
/=m /=m
n2/1, 211, 1
y2|2 e 2]1 2|1 e 21
(3.420) eim(V) = — P [(Wi = Him, V)| +j({ikim +b; ,v) = — . h [(aim , v)| +j(bim, V),
/=m /=m

pizlll(ui V) = nl+idin" dn.

92|i1( -) was increased by
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where, while using (3.35) and (3.39), for £ /= m we have defined

2|1 a2l

[ja Aim m/:
H 2|1 21 211 +1, £/— Ng +1
Ha;,
2|1
(3.432) aim =Hi — Him = Hﬁ?ﬁ m=n2l"+ ]
LHa
\_E al £ = r]2|1 1
_Hazll =~ ei t+
|1
2|1 E Zz_Hb.zll n Lp2lt m/=m+1
e
(3.43b) bim = {itim + b = e ' Ha2l 2;1
i m=ng + 1

To avoid the double-summing over i and m in (3.40), all the (-)im terms are now re-ordered sequentially with
/1

212 ')% 2|1

L

one has to keep track which parent gz_ll(') is used to compute the updated 92!2( -I)flThrs will be done by storing
the parent-term index in the variable rhl?. In addition, the offsets :|:Q2|_1 used to compute gzl_z(') in (3.41) will
be denoted by h2| The imaginary paralmeter ¢i and the real parameter I;DQ _ll in the denominatlor of (3.41), when
re- ordered sequentrally, will be denoted by c?l? d2|2 2|2_ (v) 212 v),
and y (V) will be denoted by yzlz(v) y2|2|(v) and y 212 (v), respectively. These arguments are defrned in (3. 42)2 by
sums that have the £ /= m exclusron T_o avord that, the parameters in these sums will be re-ordered sequentially,
while accountrng also for the sequential (i, m) orderrng discussed above. The number of terms in those sums will be

denoted by n? ;ﬂ The re-ordered vectors am and b” l will be denoted by a2|2
parameters Q of (3.42a) and o of (3.42b) will be denoted by q and q
2|2

one index i. Its range, or the number of terms in this single sum will be n +1). Inthisreordering,

m
and respectively. The re-ordered arguments y

a[nd b2| , respectively. T2 e re-ordered
respectrvely, while o~ of (3.42¢)
1

will be marked by P’
With these substrtutrons, (3.40), (3.41) and (3.42) are restated as

2/2

(3.44) o v =" g yPw,y*v) exp y v
X2 |Y2 i gil gi2
i=1
211 2|2 2|2 211 2|2 22
10 (V)+ g (v—h
(3.45) o*? y*Pw .y Pw = 92 oV S e 24 L0
o | i +d +y W
i gil gi2 o 0 jC2|2 a|2 2!2 a|2 _2|2 212 O
i gi2 i i gi2
and
n#?2 n#?2
(3.462) (V= ¢ @2v) v 2= q’lsen (Bi2,v)
=1 =1
n&?
y2|2 202 22 212
(3.46b) a == P (& ,v) +ib v)
=1
Note that the coefficient functronsrg é'lg( ) have tWO arguments. It 1S grouped into one vector argument with
two components denoted by y (V) = (V) y2|2(V) It is defined by combining the two equations of (3.46a)
T
while using a two dimensional Vector of parameters q = q2|2 q2|2I . With these definitions, (3.44) and (3.45)
[ il i 2
are restated as
- i 252 V212
(3.47) ¢ v =9 (V) exp y 2v) |
X2|Y2 i gl
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649 G v = L VR T R
| %HL W _2i2 12 22 ’
Fiovd +Ygi2(V)  jC  —di +Ygia(V)

where yz_lz('), t=1,2, denotes the t-th element of the vector y2 |.2(-). Similarly, (3.46) are restated as
git gi

n&?

nZ?
(3.49) 2|2(v) quIZSgn (azliz, v) €R? 2|2(v) pzlzil(azliz, v)|+j(b2'i2, v).
=1 =1

2|2 2|1

Remark 3.2. Note that the coefficient functions g ( ) and thus their parent functions g

2|[

( ) are computed

2|2

using the updated arguments y*' (v) of (3.49). Hence, espeC|aIIy when evaluating the parent g () one does not

use the old arguments ygi (v) of (3.25), but rather the updated ones of (3.49) with the offsets hETZ.
1
Remark 3.3. Due to (3.23) one could restate (3.48) as

O
11 2|2 2|2 11 2|2 212
g w+h%5° -9 (V) = h%
(3:50) w2y < L0 S Yo T J T
o i T d +y W)
! gl 0 :.2]2 2]2 2|2 212 2|2 212 0
mo e i gi2 i i gliz

which implies that one would have to store only the parameters c1|l and d1|;2 of the measurement updated coefficient

11

function g ( ) and not the time propagated ones (which are in fact the same.)

Remark ;.24. Similar to the discussion presented in Remark 3.1, for a given index i, several vectorg,lzazi|2 with
£CIl,...,ng ] could be co-aligned. In such cases, in the sums of (3.49) the elements with co-aligned a, -s can be
combined using the steps presented in Remark 3.1, thus reducing the number of elements in those sums, i.e., reducing
nzl2 For numerical eﬁ|C|ency, we assume that all those co-aligned directions are combined, hence minimizing the
number of elements n; 212 in the sums of (3.49).

Remark 3.5. The procedure for handling the special case when one or more of the Ha“".
to what was presented in subsection 3.1.1. The details are not presented here for brevity.

In summary, the measurement updated (_px v, v of (3.44) is expressed by néIZ terms. The coefficient functions

2|1 -s are zero is similar

gi (+) are defined in (53 .50) by t}éq set of parameters C; and d , the offsets h; , and the in pﬁx r of thﬁ parent-
term. Alternatively, the index ™' can be replaced by storing 'the parameters that define 9 ( ) 1.e., nd
r

d1Il The two dimensional vector input arguments of g 2|2 (+) and the scalar arguments of the exponentlals n (3 44)

2/2

2
are determined by (3.49) while using the measurement updated vectors a2|2 and b2|2 together with the vector

parameters q?|2 and scalar parameters p2|2.
1 i

3.4. Summary of Initial Results. The above derivations demonstrate that the characteristic function of the
ucpdf of the state Xk at time steps K = 1 and 2 is expressed as a sum of Nt weighted exponential terms. The number
of terms increases during a measurement update and are unchanged during a time propagation step. In each such
term i, the exponents and their weights or coefficients are functions of a sum of Nei elements. The number Nei of
elements normally increases during the time propagation step and are unchanged during a measurement update.
(In special cases, the number of elements may be reduced - see Remarks 3.1 and 3.4.) Moreover, it 1s observed that
the scalar coefficients of the exponents are functions of a vector of parameters. The dimension of these vectors are
unchanged during the time propagation step, and increase by one each time that a new measurement is processed.
Those observations provide the insight and guidance on how to construct the characteristic functions at any time
step K, as is discussed next.

4. Time Propagation and Measurement Update: General Case. The initial results presented in the
previous section suggest the general form of the characteristic function of the ucpdf of the state at any time step

k given past measurements up to time k — 1 and K. Specifically, based on the measurement updated characteristic
functions obtained in (3.16) and (3.44) for kK = 1 and 2, respectively, we assume now that at any time step

the characteristic function of the ucpdf of the state Xk given all the data history up to that time, i.e., Yk =
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21 Zp -+ Zx , 1S expressed as
_ nkix
.1) e v =" gy exp yw) |
X | Y 1 gi el
i=1
where
0
- gy 10O gy il
ke — =
I . e e +di +ygi2(V) JCi ¥ +yl§|i|§(v)
and
k/.k nk/.k
(43) yrm=dle @) eRG Y Tm=— TI@ET VI v,
=1 =1

K|k

Here, y l () and q are K dimensional vectors. When evaluating g ka( -) 1in (4.2), the argument Y klk (7) 1s

partltloned as follows y klk ( ) is a kK — 1 dimensional vector constructed from the first K — 1 components of y%‘ ( ),

while the scalar ygiz(-) 1s the last component of ygi (-). Based on the results in subsection 3.1, at K = 1 the

numerators in (4.2) are one. Alternatively, the form of (4.2) can be maintained also for k = 1 by initializing gklik(')
ve oQ10(V) = 1.

Now we will perform one time propagation and one measurement update and show that the above form is
maintained at any time step. Although the derivations are similar to those presented in the previous section, a full
derivation is presented here for clarity.

4.1. Time Propagation from k to k + 1. Starting with the characteristic function (bkak v of (4.1) we

want to compute (_&m Ive v while accounting for the time propagation equation Xk+1 = OXk + 'wk. The result
in (C.4) of Appendix C indicates that the desired characteristic function 1s given by

“4.4) ® v =@ dTv o TITv = n¥gk v DTy) exp Y DTv) e BICYI
Xier1 [ Y Xk |Yi wW i gi
eii=1
¥
_ e gkl ki K|k

i gi (CDTV) CXD Y (CDTV)—B|(F,V)| :

The coefficient functions gika (+) are given in (4.2). Their arguments and those of the exponents in (4.4) can be
redefined as follows

etk K|k ne Kk K|k
(4.5a) g M=y (@Tv)= G s (da ,v) eR
=1
klk
yk+1|k K|k Neiw klk K|k klk
(4.5b) i V=Yg (OTV)=B|(T,v)|=~ Pi |(Qa ,v)|=BI(T.v)|+jlb; ,v).
=1
With these definitions, (4.4) can be restated as
- e Kk YKol k+1 [k
4.6) ® v = g (V) exp y w) ,
X1 | Yk i gl
i=1

which clearly has a similar form as (4.1). Specifically, defining the time propagated parameters similarly to the
five-steps procedure outlined in section 3.2 including the new parameters r k+1|k kilk, hik+1|k = h'.(lk, the result
above can be restated as

- k+1/k
.7 o) Nt ghetlk yketlk k+1|k
X 1Ze V = i g (V) XDy, (V) ,

i=1
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where
k—1lk—1 | k+1|k k+1 |k k=1lk=1 k+llk, n _ pkl|k
(4.8) gk+1|k yk+1|k 1 grl_c+1/k ygil W +h i gr).c+1lk Ygir (V) = h% é
: i (v = L otk ——krtt—— | — kerttk——korttk—fkrtt——
i gi . .
2m J[of +d +¥Ygi2 (V) Ici —d +Ygi2 (V)
and
kJ_rllk kJ_rllk
(49) y;("'llk(v): Nei q-k+l|ksgn (a|f+l|k, V) = Rk, y:+l|k(v) - — Nei p-k+l|k|(a-k+1|k,v)| +J(bk+l|k,v)
1 1 1 1 1 1 1
=1 =1

The vector y:llk( -) 1s partitioned into two parts used to evaluate (4.8): yklk.(-) is constructed from the first kK — 1

il
o)

components of yglik('), while the scalar ygé () is the last component of Y g;
The number of terms that define P 1z in (4.7) is identical to that of @x, |z, * in %11& Holyfﬁtver, the
number of elements needed to define the arguments of those terms has increased by one, i.e., n° " =n""" +1. It

k1l with £ € [1,..., 0% in (4.9) could be co-aligned. In such
el

1
cases, the associated elements in the sums of (4.9) could be combined, thus reducing the number of elements in
those sums, as discussed in Remark 3.1.

may happen that for a given i, several vectors a

4.2. Measurement Update at k + 1. After performing the general time propagation step in the previous

subsection, thus attaining the characteristic function @ or 126 of (4.7), the next step is to use the next mea-

surement update Zk+1 = HXk+1 + Vk+1 to determine qox » -, where Ykv1 = 21 Z2 -+ Zk+1 . Using the
. . . k+1 k+1

general convolution results of (A.7) in Appendix A,

(4.10) DX IYer v o= 37 Xealve VHTD @ -0 ei#eandy
— 1 - T .
=5y Xealve VTHUN exp —yInl +jzk+an dn,
where from (4.7)
_ niﬁl/k
4.11) ? v —HTI7 gk+1|k yk+1|k v — HTn exp yk+1|k v — HTn ,
_Xk+1|Yk i gi ei
i=1
gk+1|k
i (-)1s givenin (4.8), and
yI<+1I|< V—HTI] - ngl/qu+1|k k+1|k T k
(4.12a) gi i sen (g ,v—Hn) €eR,
=1
ye y W = - ngl/kpk+1|k k+1 [k T k+1]k T
(4.12b) ei i (& ,v—H n)[+jb ,v—H n).
=1

The integral in (4.10) is solved using the methodology presented in Appendix B.2 in precisely the same way
that (3.31) was solved in section 3.3 while replacing 2|1 by K+ 1|k and 2|2 by k+ 1|k + 1. The equivalent forms to

(3.47), (3.48) and (3.49) are

Ie+d [kt

4.13) ;cp "4 t gk+1|k+l y|<+1||<+1 k+1 |k+1
Xierr [ Yiers i gi (V) CXD g v,
i=1
(4.14) 0 0
gk+1|k+1 yk+1|k+1 _1 0 rklilillkﬂ y:;-i'—]_l'k-‘—l(v) + hk+1|k+l B g:gil/k+1 ylé-i‘—lllk+1(v) - hk|+1|k+l
! R e I AR

i gi2 (v)
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plerilierl
YTl e Lkl o k+llk+l k+1
NCE 4 @  .v) eR
=1
plerliierd
yk+1|k+1 et k+1|k+1 k+1|k+1 k+1|k+1
(4.15b) ei V== Pi [(a; V)| +]j(b; V).

=1

(4.152)

al

k+1|k+1 .
! ] are co-aligned,

As discussed earlier in this work, if for a given index i several vectors ak_+1|k+1, £CIl,...,n"
1 el
the associated elements in the sums of (4.15) could be combined, consequently reducing n:llkﬂ, the number of
elements in those sums.
The above results clearly show that the form of the characteristic function proposed in (4.1-4.3) for the time

step K is also maintained at K+ 1.

5. Conditional Mean and Estimation Error Variance. The minimum conditional variance estimator
of Xk given the measurement sequence Yk = Z1 Z2 - - - Zk is the conditional mean of Xk given Yk. It can be

determined by evaluating the characteristic function of (4.1) and its derivatives at v = {0}n, oras v—{0}n. Inthis

section we show that B v+ is twice continuously differentiable and give explicit expressions for the conditional
mean and the estimation error variance.

5.1. Continuity of the First Two Derivatives of the Characteristic Function. The continuity of the

first two derivatives of B|vx * is proven by induction. First the case that hi /=0, i={1, ..., n} is addressed.
The case when hi =0 for some i € {1, ..., n}is addressed at the end of this subsection.
5.1.1. Continuity of the First Two Derivatives of @x,v,. Assuming that hi /=0 fori={1, ..., n}, the

characteristic function for the ucpdf of initial state given the first measurement is given by the convolution integral
in (3.10). Then, using the definitions in (2.4) and (3.11), (3.10) is rewritten as

_ 1 0

_— n _
(5.1 Oz VT 5 e—ailu—nlg=vInl+izingp
o =1
- _ f. _lt . ) ) ) s
where ¥ = (Wi, v)and v= w +-- w . Lheintegrand of (5.1) is a continuous function of 7 and uVi=1,...,n.
Moreover, its partial derivative with respect to any VY, given by
5 (n” N
(5.2) Y e~Pilvimnle=vinltan o con(y—merilu—nl"  e-pli—nlg=vinl+zn,
i=1 ;71511

1s piecewise continuous, bounded, and integrable. Hence, when computing the partial derivative of q_oxl 121 vV with
respect to VY, the differentiation and integration operations can be reversed [2] to yield

v 1 . _orY 3 _
(5.3 0\ X1123 == p sgn(V —nyepill¥=nl  e-pili—nlg-vinl+izingp
oy 27-,_00 i i j?iL
Since the integrand in (5.3) is piecewise continuous and bounded functions of 1 and Vi =1,...,n, the first

derivative 8@, |z, V 10V is continuous [2].

The second partial derivatives of @, |z, Vv is attained by differentiating (5.3). To avoid the differentiation of the
piecewise continuous function sgn (Y — 1), we introduce the change of variables Y—n=0 = n=y—o0, dn=—do
to restate (5.3) as

- oo
> n
(5 4) o X11Z1 v = i ) (o‘)e_pj|0| ne_pi|-‘7i_r6+a|e—y|\7j—a|+jzl("\’§—a)do.
oy o pjsgn - .
- /=]
The integrand in (5.4) is a piecewise continuous in G, continuous in W Vi=1,..., N, and its first partial derivative with

respect to Y is piecewise continuous, bounded, and integrable. Consequently, in computing the partial derivative
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of (5.4) with respect to Vv, the order of differentiation and integration can be interchanged as

27 « N -
2% - 1 9 n
(5.5) Xilzoe Vo _ _ pisgn(o)epilol 1 e—pilu—vrolg-yIy-ol+iz@-0)l 4o
T A~ A~ ﬁ J ~ J ]
ovoy ov .
—oo J;‘*;l
The partial derivative and hence the integrand in (5.5) is a piecewise continuous and bounded function of the
variables 0 and wVi=1,...,n. Therefore, the integrals exist for all j and £ and are continuous with respect to all

(4, V) [2]. This implies that all the elements of the Hessian of (,ox1 1Z1 V are continuous for all v.
In summary, @&, |z, V 1is twice continuously differentiable with respect to V. Since V is a linear function of v,
( x1)z, ¥ 1s twice continuously differentiable with respect to v.

5.1.2. Continuity of the First Two Derivatives of @x,y,- The time propagated characteristic function
at K =2, which was given in (3.22), is considered first. It is rewritten as

— _ T
(56) 1x2|21 V =1 X1|21 (DTV e ﬁlr VI.

Since, as 1t was shown above, (px 1z, v 1s twice contmuously differentiable, <PX 1Z1 dTv is also twice continuously
differentiable for any transition matrix @. Clearly, @y, |z, V 1scontinuous, being a product of two continuous func-

tions. However, since the first derivative of @ 1" "I js not continuous at v = {0 }n, the associated pdf fx 212, X2|z1
does not have any moments. This implies that we cannot compute a priori estimates of the state X2 given only the
past measurement Z1.

The characteristic function at the second measurement update, given the measurement history y2 = {z1, z2},
was expressed in (3.31) and rewritten here using the explicit form of (5.6) as

oo

(57) (XalY2 v = j% ! X1|21(V - HTn)e_ﬁlr TV—HFr/le—Vlr)|+j22f)dn’

— 00

where we used the notation ¢x1|zl(v) = Xi1|Za ®Tv . Note that if HI =0, the term e BTVl would come out of

the integral in (5.7). Consequently, in this case ¢,|z, vV would not be continuously differentiable with respect to
v, and there would be no minimum variance estimate of Xk given Yk for all k = 2. Therefore, HI" /=0 is a necessary

condition for the continuous differentiability of @, |y, v and the existence of the desired estimate of the state Xk
at any time step K.

From section 5.1.1, @&, z,(v — HT 1)) is twice continuously differentiable with respect to V. Moreover,
e—;GIFT"_Hr'7| is once piecewise continuously differentiable with respect to v as
de—BIFTv—Hrn|

(5.8) - = ~Bsgn TTv—HTn eI 7yoprg 1.
"4

Therefore, when constructing the first derivative of (_p><2 v, V with respect to v, the order of differentiation and
integration in can reversed to yield

oo~ _yT
(5.9) 9 Xz Y2 v _ 1 REATAY Hm e—BIr” v=Hlnlg-vInl+iz2n gn
ov 2m ov
1 o -
+om xaizmW—H) —fsgn TTv—HIn eIl voRmITT - emvinlsizzngy,
Since the integrands of (5.9) are piecewise continuous and bounded functions of  and vi,i=1,...,n,

dt x,|Y, vV /OV is continuous. )
The second partial derivative of ¢, |y, V can be taken after making the following change of variables
I'v FT

(5.10) — _
Hp ~1=0 0= yp ~odn==-
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Substituting (5.10) into (5.9) we obtain

[ee) ~ T T

x|y 1 9 x,1z,(PV+HT v o4z, TV

Zfelv2 vy o - 1141 _ _ _
G.1D ov = 0) e BlIHTolg ™V ar o0 4o

- o OV
rT Ty
_ 1 - (PviHTO) Bsgn(HT o)e BIHMOIPT o7V s —o¥iz2 "0 g
Wi A

where P =1 —HT(HT )™ X T"T. The second partial derivatives of (_px2 o v ertTh respect ‘EQTV are obtained by differ-

entiating (5.11). This requires taking the differential with respect to v of eV —oHZ2 o , which is piecewise

continuously differentiable and bounded, and of afl’x1| z,(Pv+ HT 0)/dv, which is continuously differentiable by
the result of the previous subsection. This implies that the integrands in (5.11) are piecewise continuous functions

of o, are continuous in V, and have piecewise continuous and bounded first partial derivatives with respect to V.

Consequently, this implies that the Hessian of @, |y, Vv is continuous [2].

5.1.3. Continuity of the First Two Derivatives of @x,,,|v,.,- In & recursive manner, the continuity of
the first two derivatives of the characteristic function is now shown to be maintained when propagating from time
step K to time step K + 1, as it was maintained in going from times step 1 to 2 in subsection 5.1.2. It is assumed
that using the recursion up to stage K, By Voas given in (4.1) is twice continuously differentiable.

The time propagated characteristic function from K to K+ 1, given in (4.4), is written as

N - T —BIrTy|
(512) X1 | Y V = Xie| Yk O'v e .
Since e AIT"Vl is not continuously differentiable, (_,pxk+1 Ive v 1s not continuously differentiable and minimum vari-
ance estimates cannot be determined before the next measurement is processed.
The measurement updated characteristic function at K+1 is given in (4.10) and rewritten here using the explicit

form of (5.12) as

—_— 58] ~
_HT —BIT Tv—HIn|a—vInl+jzkm n
(5.13) Uxen [Yea ¥V — gﬁ CxejzeV —HIme e dn,
where (bxlek(V) = 3]y ®Tv . The first derivative of (IJX}C+1 Vs Y 1S obtained in a manner similar to that used

to construct (5.11). To take the second derivative, the change of variables given in (5.10) is used to obtain

A Xeur IV 170 sy PV HHT ety
T X Wiy klYx - - O +jZke1 -
(514) av _ﬁ o_) e ﬁ'Hr0|e Y ur ur — O do
- oo ov
rT Ty
1 T (Pv+HT0) Bsgn(HT o)e AIHMol DT o7V ar —0 +jZke1 o do.
T q&qu

The integrands in (5.14) are at least piecewise continuous functions of ¢ and continuous in V. Moreover, their
first partial derivatives with respect to V are piecewise continuous and bounded. Therefore, @x,.,, |v,., vV 1s twice
continuously differentiable [2], thereby justifying the supposition that the recursion produces a twice differentiable
characteristic function after each measurement.

5.1.4. Measurement Matrix H with Zero Elements. Suppose H has only one zero element, hj = 0, and
assume that (H, @) is an observable pair. Therefore, (5.1) can be written as
- e . o I - ;
(5.15) ¢ v o= @I TR ahalgyinitinngy — € @@V o ey
X1z 2m i1 T xi1z2 (5 )
T A

where « x,1z,((§,Vv)) is determined by the integral in (5.15) and § is a N.X N — 1 matrix defined as § =
{€e1,...,€-1,€p1,...,en}t. Due to our previous result in subsection 5.1.1, ' x11z:((§,V)) and thus @ |z, v
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j+1 ,---,anT. However, clearly
(X;1z: V is not continuously differentiable with respect to (j,v) = vj due to the term e~ in (5.15).
Therefore, only a reduced-order state estimate can be constructed at k= 1.

Using (5.15), the time propagated characteristic function at K =2 is given by

(5.16) @ v = (& OTv)e~alef®Tvig=BITV)I,

is twice continuously differentiable with respect to the (§,Vv) = {Vvi,...,Vj 1,V

X2|Zl Xllzl j

After the second measurement update it 1s expressed as

B.17 () v = P Tv-HOen e~ les® Tv—HOg n)Ie—BIFT(v—HTn)Ie—vlnIﬂZznd,]_
><2|Y2 N X1|21 J

— o0

IfHOej =0, as in (5.15), (5.17) decomposes as

T T

_ aje vl
(5.18) Cxalva |, _ e—_lzl;i‘ %2 v, E D TV),
where (})x v (& ®Tv) is defined by the remaining integral in (5.17) after removing €% 1&® ¥ from it. Clearly,
21Y2 j

in this case ®, Iy v is not continuously differentiable at v = {0}n. However, if HOej /= 0, there are no terms
2 2

that can be factored out like in (5.18). Moreover, since the integrand in (5.17) is continuous in 17 and Vv, and has
piecewise continuous and bounded derivatives with respect to those variables, using the procedure established in

subsection5.1.2, R, v, v is twice continuously differentiable. Consequently, due to the result in subsection 5.1.3,
when H D ej /=0, gj v v is twice continuously differentiable for any k = 2.
k k

Now we return to the case that H®ej = 0. Using the steps presented above, if H ®2ej /= 0, then (_9<k|yk v
is twice continuously differentiable for any k = 3. Similarly, if also H®?ej = 0 but H® 3ej /= 0, continuity

can be proved for K = 4. Since the system is assumed to be observable, there always exist 1 £ £ < n such
that

HOP lej=0Vp<£and HDO ~lej/=0. Consequently, (_Rk|yk v is twice continuously differentiable for any k = £.
This procedure can be extended to any number of zero elements of H.
5.2. Construction of the Conditional Mean and Estimation Error Variance. Having established in the
previous section that By v is twice continuously differentiable, the explicit form of the pdf of the measurement
history, the conditional mean, and conditional variance is determined from (4.1-4.3) by evaluating Pl v v and

its derivative as v —> {0 }n. We choose V = V, where is a positive scalar such that — 0 and Vis a fixed direction
in the v domain for which

(5.19) @y 0 v £
£

Along this direction the conditional mean and conditional variance will be shown to be easily computable, avoiding
the discontinuity issues of sgn ( alklk, v) when the condition in (5.19) does not hold. Due to the continuity of

v and its first two derivatives, any V can be chosen as long as (5.19) holds. With this choice of v,

! Xk |Yx
(5.20) sen (@, 1) =sen (@7 =5
1 1
are well defined constants that satisfy |S'| = 1. From (4.1-4.3), (_p - along this direction is given by
Xk|Yk

_ nklk
(5.21) o v o= g yID exp v,

Xk |Yx i gi ei

i=1

where the functions giklk(') are given in (4.2). Their arguments, defined in (4.3), are
klk nkik

Kk e Kklk Kk el KK i K|k K

(5.22) ygi (VW= q s (8 , ¥ = 0 sS=y;WeER.

=1 =1

n

Since the vector Vis constant, the arguments yk;k_(') and thus the coefficient functions gkilk(') are constant along
1

the chosen direction. This will simplify greatly the evaluation of (_DXkIYk - and its derivatives at the origin of the
spectral variable v.
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Similarly, the arguments ykelik (-) of the exponents in (5.21), defined in (4.3), are manipulated as follows

nkik nkik

K|k e klk o klk Kk el klk Kk Kk K|k
(5.23) Vi (W==" b & , DI+ , P=—p sen (& . ) (a , P+i(b , V)
) 1nk[k ) 1
= U= TP @ D) +jo N 9l = (M@, ),
- 1 1 1 el
where we have defined
nk/.k
(5.24) @ =— "p isiatlyjbrl¥,
el o 1 1 1
K|k K|k

which is a n-dimensional vector. Since the vector V is constant, so is the expression (¥ (W), V), making Yei (*) of
the exponents linear in along the chosen direction. Using the above results, (5.21) can be restated as

- - nf* Kk K|k~ KK o -
(5.25) o v =gy exp W) .
Xk| Yk 1 ai el
i=1
This last form of (_pxlek v will now be used to compute the minimum variance estimate and its error variance.
The conditional mean of the state Xk given the data sequence Yk is given by

&p_Xlek v T

1
5.26 S — _ 7
(5.26) X = E[Xk | yk] T a( v
E=0
The pdf fv, Yk needed to normalize the above result is determined by evaluating (_pXkIYk v at = 0. Using
(5.25) we obtain that
ki
_ - - klk . klk, o
(5.27) fe Y = By, V o' yg W)
==

where giklk(') are given in (4.2) and the arguments yl;lik(f/) were defined in (5.22).

The derivative 0£| k(_&lek - used in (5.26) is determined by differentiating (5.25). Since, as stated earlier,

Klk . k|k
gi ygi (VW and (% (W, V) are constant, the derivative is evaluated as
(a‘ v N N Kk kI kK e KK oy =
(5.28) Xl Vi = g y© *Wex» 0.0
a(Q) _ i gi ei ei

i=1
Evaluating (5.28) at =0 yields the minimum conditional variance estimate

1 n* Kk kK klk
(5.29) Xk = . il I Yei W,

JfYk Yk ﬁlgl Y@ (W ©

kK Kk klk
where fv, Yk , 8 (), Ygi (W, and ¥%; (V) are given in (5.27), (4.2), (5.22) and (5.24), respectively.
The second conditional moment of Xk given Yk is determined by
1 &%
(5.30) E[xkx" |yk]= _ Xkl .
2,y a(0anT

The second derivative in the above equation is computed by differentiating (5.28) to yield

- ~ Kk ~ ] ~ ] T ] A
(5.31) 8% xulve Vo= niRgklk Mk Kk kG Texp Y@,
a(wa( T e e ¢ (e

i=1
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Hence the second moment is given by

Kl k

1 ¢ K|k -
(5.32) E[XkXT |yk] = k|k vy w) _Kk |k
“ P Yk o 57 o KK (D) Yei (V)

T

Finally, from (5.29) and (5.32), the error X = Xk — X« variance can be evaluated as

(5.33) E[%J(Tklyk] = E[kaTklyk] - 50<5<Tk.

5.3. Conditional Mean and Estimation Error Variance at k = 1. To appreciate the complex results
given 1n section 5.2 and to understand the underlying structure of the Cauchy estimator, greatly simplified and
compact expressions are determined for k = 1. Here we address the case that hi /=0 for i = {1, ..., n}. The
characteristic function Bz v evaluated along v = V is given in (5.25). For k = 1 it can be easily simplified to

(5.34) oo o O 10 0 0
n+1 n+1 N n+1 0 n+1 [

¢ Vv = Uy tP+ pS — iz —p ps ep - p@ s +jiz W V.
X11Z1 o — 0o 1 i . i0 0O 1 i i i0 O 0 X i i 1 O
. - - -
= /=i /=i /=i

The pdf of the measurement history, the conditional mean, and the conditional variance are found by evaluating
(5.34) and 1its first two derivatives at = 0. There are many straight forward manipulations needed to obtain our
final compact results presented here. These detailed derivations are omitted here for brevity.

First, fy, Yk =1 =fz, z1 , given in (5.27), is determined by letting — 0 in (5.34) and noting that most of
the term in the remaining sum cancel leaving all but the first and last terms. The final form is thus determined as

n

. ﬁ( n+1 \—1(. ne1 \o1 ), alh|+y
(5.35) fz,z2 =1 7 jzatpr+ p - jan—- p D=L @
2m m oy 2

=2 =t 72 + )’a|h|+v

In the last equality, the initial parameters in (2.4) and (3.11) are used. )
The conditional mean is computed by taking the derivative of @x,|z, Vv given by (5.34) and then letting
— (0. We obtain

(5'36)_ 0po 0410 0400 DLt
~ n+1 [ n+1 n+1 n+
Qi Xalze V 1 Ehsin 0 O, -0 0 oo
v jzirpir psio-0di psill 00 Psal izt
E=0 i=1 B =1 =1 =1
/=i /=i /=i
where a i = —a; was used in (5.36). To simplify the above, place numerator terms over the common denominator

elements as given in the sum of (5.36). In doing so, after a bit of straight forward algebra and using the decomposition
ai = Mi — MU, these elements simplify such that all but the first and last terms cancel. Therefore, we obtain

- o iz p i
5.37) 4 X11Z1 _1 1
o v =S
E=0 z¢ + )1

Dividing (5.37) by (5.35) and the imaginary number j, the conditional mean is determined as

). f
z17 pH asgnth) -+ asgn(h I+
(5.38) 1=t =2z )
n+1 1 1 n n
n
bl h
=)1 0 :10 [hil +vy

This is the explicit form of the conditional mean given in (5.29) evaluated and simplified at k =1.
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The conditional second moment is determined from the second partial derivative of prl 121 v with respect to
vand letting — 0 as

- ﬂ]][ [_15 uD_lu
2 > . 1 L . 1
(5.39) 9« Xlz. Vv =1 "z 4o+ "o D_ sz -0+ ™ -
—a s o — — i i 1 i i
o VoV R 00 1 1 i =3|; i
/= 0 < np 0
« 0 n+1 . 00 n+1 T - TD
- ps@ai+jzapit (- P Si@ i+ jzip [
= =1
/=i
/=i

To simplify (5.39), place numerator terms over the common denominator elements as given explicitly in the sum
in (5.39). In doing so, after a bit of straight forward algebra, having made use of the decomposition & =M — M ,

these elements simplify greatly. The result is

(n+1 (

] n On

2 -

PRz, VD L P L PH T

(5.40) me = G 2 - pup
o vo vl n '

E=0 2Jr , =1
Z+ )

The conditional second moment is given by
1 9% v
f T | X1l|Za
(5.41) E xix} |21 = —- :
fZ (Zl)
' owv 7

where fz,(z1) is found in (5.35). The conditional error variance, where X1 = X1 — X1, is then determined as

(¢ \ 0
O ; alh|+y —Cfl(?lnsgn(hl)sgn(hr)D
f | f |DE ”ﬁT i=2 C -
(542) E %X |z1= 1+ . 2t 3 g
! o 2 - 1 AN\
( =pailhil+y) . a " 0
—aiansgn (h1) sgn (hn) - - - m ailhi| +vy
n i=1

This is an explicit form of the conditional variance given in (5.33) for k = 1.

It is surprising that at K = 1 the pdf of the measurement history, the minimum variance estimate and the
estimation error covariance matrix given, respectively, in (5.35), (5.38), and (5.42) can be expressed analytically in
such a compact and relatively simple form as functions of the system parameters and the first measurement. Such
simplicity is not retained for the subsequent time steps. It is also interesting to note that, contrary to the Gaussian
case where the estimation error variance is known a priori, the estimation error variance of (5.42) is an explicit
(quadratic) function of the measurement 23 .

6. Three-Dimensional State Estimator. The performance of the proposed estimator was tested numeri-
cally. The system parameters were chosen as follows:

0 0 0 0 0 0 0
14 =06 -10 0.1 ar 0.1
o="-02 10 050, r=- 035, T =008,
06 —0.6 —02 | ~0.2 as 0.05
H=" 10 05 02, B=0.1, y=0.2.

The system has stable eigenvalues at 0.7 £ 0.3 and 0.8. It is observable and complies with the necessary condition
that HI" /=0.

The simulation results are depicted in Fig. 6.1, showing the estimation errors in 6.1(a), and the cross-correlation,
process and measurement noises in 6.1(b). It can be clearly observed that the estimation error standard deviation
depends on the measurement sequence. Specifically, the standard deviation increases when a large measurement
noise is encountered, e.g., at time step #4.
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———e— Estimation Error — =% — Error Standard Deviation ( +0) . P12 om— m—— 013 — —- — (23

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
Step # Step #

(a) Estimation Errors (b) Cross-correlations and system noises

Fig. 6.1. Three-State Estimation Example: Numerical Results

7. Conclusions. For a linear discrete-time system with additive Cauchy measurement and process noises, an
analytic recursion of the characteristic function of the unnormalized condition pdf is determined for the n-vector
state estimator. This characteristic function is shown to be a growing sum of terms involving a coefficient function
multiplied by an exponential whose arguments are weighted nonlinear functions of the spectral variable. It is
then shown that this characteristic function is twice continuously differentiable, allowing the determination of the
conditional mean and the conditional second moment, from which the conditional error variance is determined.
These moments are a nonlinear function of the measurement history, where the conditional mean constitutes the
Cauchy estimator for the multivariable system. The estimator was then evaluated numerically for a third-order
example. At this stage of the numerical development, only a few steps in time are shown for this example because
of the excessively large number of terms needed to represent the characteristic function. Nonetheless, this is the
first time that a closed-form analytical estimator is derived for a multivariable system with heavy tailed Cauchy
process and measurement noises.
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Appendix A. Characteristic Function of an Unnormalized Conditional PDF Given a Scalar Mea-
surement. Consider a scalar measurement of an Nn-dimensional state vector as
n
(A.D zZz=Hx+v= hiXi + V.
i=1
where Z is a given scalar measurement, X € R", and Vv is Cauchy distributed. For this measurement, the characteristic
function of the unnormalized conditional density function is given as

[e’e) (o]

V = ... fx x fy Z—Hx eV'xgx,

(A2) iz

— o0 — 0o

The above resembles a Fourier transform of a product of two functions: fx X and fv z —HX . Using the dual
convolution property, this integral can be solved by a convolution in the v domain between the characteristic
function of fx X , i.e., @x Vv , and the characteristic function of fv z — HX , which we denote by @/ v . Hence,
x|z vV can be computed by the convolution integral

(o] oo

(A3) ox v—n @ N dn.

X1z Y= ame

— oo — o0

The characteristic function @/ VvV is determined as follows

oo co oo oo ( n \
(A4) (Aﬂ/ vV = e fV Z — HXx ejVTXdX: y fV Z — hixi el-)'ﬁ:lvixidxl"'an.
—eo —oo oo oo i=1
Assuming, without loss of generality, that hn /= 0, we perform the change of variables & = z — )’?:1 hixi. This
implies Xn = z — §—)’ni;11 hix; /hn and for fixed Xi,i = 1,...,n — 1, dxn = d&/|hn|. Using this change of
variables, (A.4) is manipulated as
~ ° ° i (/-,_1—1‘/_)( v z—§—)"i;l;| hixq
(A5 @ (v)= o e s e fin d&/|hnldx1 - - - dXn-1
- — oo - 0
eivazih, [ i e oo j)-n—l v — My x -
=- fv (e T iredE e =1 T hn 7 Tdxge--dxn 1
|hn| O od -0
iVnz/h, n—1 . : iVnz/hy, e
= &(p\/ —Zn mn g eJ Vi_:nvn XidXiD = ﬂq)\/ -Vn (277)5 Vi — ﬁvn
Ihnl hn i=1 - |hn| hn i=1 hn
where &(-) is the Dirac delta function. Substitute (A.5) into (A.3) to obtain
_ no1 oo oo ”_n ( ﬂﬂ n—1 ( hi
— J h, 2 - R s _
(A6) ( Xlz(v): Qm) @x(v—n)e'nr (R/ hn ir:-]l 5 ni hnnn dnl dr[n 1dl')n
Qmn hn -
1 « ( ﬂﬂ nn (
= v—HT iz On gp,.
217|hn| e &Py - n i

Finally, using the change of variables 17 = Nn/hn and hence dnn = dn|hn|, the last equation can be restated as

oo

1 |
CxzM= 5 ex v=HTn ev (-n)e*dn.

— 00

(A7)

Appendix B. Integral of an Exponent of Absolute Values. The measurement update stage of the
Cauchy estimator entails evaluating a convolution integral that involves an exponential of absolute values of affine
functions in the spectral variables. In this appendix we present a methodology for carrying out such integrals.
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B.1. Exponent-Only Integral. In the first scalar measurement update, e.g., (3.8), we encountered the basic
integral of the form

oo f( \ |

n
B.D = exp - pl|é-n +iZn dn,

—o0 =1

where z is the measurement, o -s are positive constants, and the € -s are variables linear in v. The difficulty in
evaluating this integral is that the € -s must be ordered to carry out the integration. However, since the € -s are
functions of the spectral variables v-s which take on any value, any ordering of & -s is possible. We show that the
solution to this integral can be expressed in closed form regardless of the order. For convenience, define

(BZ) §0 = —00, §I’1+1 = OO

To carry out the integral, we first assume that § < & for all £ <i with (£,i) € {0,...,n+1}. In this case the
integral (B.1) can be decomposed into the sum

O
(B.3) Eir1 £ \ O f \
n [ n o [% ira « . 1 [%
I = exp - pl§-n *izndnp " H o P € —msm@ —m *ian dn .
i=0 @ & =1 a i=0 E & =1 a

Note that sgn (6 — n) is constant over the interval n € (&, &i+1), Vi. This constant depends on the relative size of

the indices £ and i. With this in mind, for 1 in the closyre n € [&, &i+1], we can define the sign function in (B.3) as
sen(§€ = &) if i/=£

(B.4) sen(§ —m =si= - if i=£

From (B.4), for a given i, the discrete, two indexed function S I1s constant for all £ except for one switch at £ =1,
1.€., S = -{VE£<iand s =1VE>I Moreover, it can be concluded that s —s L Vi/=E£.

Usmg the dﬁflmuons in (B.4), (B.3) can be restated in terms of s; and mtegrated as

§i+
n o ' T( n \ _ | ﬁ
e & =1 g
0 C ), _ 0 0 C ), _ 0
n Hexp =7 p (@ —&w)s . +jzéin Lonexp =70 € —=%d)s  +jzéi 4
_ i i
oD s 0 0 Y 0
= i=0 iz+ " ps i=0 iz+ 7 ps. -
0 i O 0 =
The first sum in (B.5) can be manipulated éél follows
O . 0 O C . 0
n Uexp — h p (& — &i1)s : +jzéi+1 U  n1lexp — h p (& —é&)s  +jz&ir U
- =1 - 0 -0 _ i O
(B.6) o izt ) os O_ oD =1 iz + ) s 0
0 i O O i U
= =1
. [l . 0
exp Ch p (& —&np)s  +jzén+a n D[ Xp €% p& —&s  +jzéi DD
- =1 - _ -1 i—1
+ = .
jz+)]’psh i=1 [ jz+)qps._ -
=1 -1 i—1
- =0 because sf=-1 V_sn and &pr1=00
Since Si' P 1 and S. , =S5, Vi/=£, the above result can be simplified as
( -~ j@ ag a’ a _ f Dé
[l ) B exp -7 p (€ —&s - +1ZG6i -
n [lexp —)"/O(sc —&i)s +iz& 1 o M4 V20 D@
O_ i-1 O B £
®.7) 2, . AL, .
i=1 [ iz+"ps | B = DH jz+pi+ 7 ps, -
=1 =1 L
0 /=i 0
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In the above, the zero term pi(&i — §i)Sii_l = 0 was dropped from the sum in the exponent.
The second sum in (B.5) can be manipulated in a similar fashion to yield

L] ad a oA
O C - ] exp —a'p(f —&)s - +izéi -
, _
n e =T pE s 42§ 0 a4 i B
(B.8) ) == 0 Zall .
). e
i=o 1 iz+7 psi D= by iz —pi+ ps
=1 u =1 [}
0 /=i £
Substituting (B.7), (B.8), and sj=sgn(§ - &) V £/— i of (B 4) into (B.5), the solutlon to (B.1) 1s expressed as
a a a0 0 0
n oo .0 oo P .
(B.9) l= g "o sen(€ e 1 €i|[+JZ€ -
i=1 =1 =1
/=i /=i
where
O O
0" U 1 1
(B.10) 9 P sen(§ — &) = )n - y°
e jiz+pi+” psen(€ &) jz—pi+"_psen(§ — &
/=i /=i

Changing the ordering of the € -s caused by changes in the V-s does not change the solution of the integral
given by (B.10). Effectively, the sgn function in the exponential and denominator make the integral independent
of the ordering of the € -s and thus giving a general result for the integral of (B.1).

B.2. Generalized Integral. In the second and subsequent measurement update steps we encounter a more
general integral of the form
o ( n \ 11 ¢ \ I

n
(B.1D) = g Qsen(€-m exp - plf-n +izn dn,
—oo =1 =1

where Q could be m-dimensional vectors. We use the same methodology as before to solve the integral in (B.11).
Using the definitions of cfo and én+1 in (B.2), and those of S; in (B.4), the integral is restated as

R N\ fC A
(B.12) =% Qsen(€ —m €0 —  p (€ —msgn€ —n) ﬂm<ma
=1
Eir1 O
¢, N FC ., N
= g Qs; exp -  p (¢ —-nsi +izn dn
iZOQ =1 =1 E

&i

It 1s integrated as

nﬁg ()”’Qsi exp ¢ Lp(f —§+1)S +jzéiv1 %
B.13) I = = B =1
(B.13) o j“)npsi ]
=1
n %q( *q s, oxp (—)”p(s‘ —&)s | +izd
- o

i=0 (] jiz+7 ps H

=1
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and manipulated as before to yield

o 0 0 o0
' )
L0 Qs gl T syl
(B.14) I = == ) =i 00
B, In - n HexpO0—
i=1 Yz + pi + pPSi JZ—pi+ pPS .
0 =1 =1 ' 7
/=i
Substituting S j=sgn(§ — &) V £ /=, the integral becomes
O ] 0o
n D n n D D
(B.15) = Gi Qsgn(€ —¢&), psan(€ —¢&) exp
O I i [ a0
i=1 =1 =1 =1
/=i
where /=i /=i
(B.16) 0
)} :
. U guQi+ 7 Qsen(§ - &)Y
n n . =1_
gl Qs -8, psm@ —& . =— /_)In
b=l =1 iz+pi+ " psgn(€ — &)
/=i /=i J Pi :1P g i
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/=i

n

0 0

0 0
) p (& —é&)sin+jzé&ir.
/=i

0 0

0 n o . 0
- pl¢ _flmﬂz‘fr

0 0

97—Qi+ )_’ Qsgn(§ — &)
=3

N

)
jz=pi+ _ psgn(§ — &)

/=i

Appendix C. Time Propagation of Characteristic Functions for Linear Systems. In this appendix
we consider a multi-stage propagation of a random vector through a linear system, 1.e. Xk+1 = @ Xk + I" Wk, where

xk € R" is the system state, the initial conditions X1 € R" and process noise Wk € R™ are independent random

vectors with given pdfs fx; X1 and fw W , and characteristic functions @x, Vx and @w Vw , respectively. Note
that here vx € R", while vw € R™. For simplicity, the pdf and hence the characteristic function of W are assumed

to be constant for all k. ® € R"™" and T' € R™™M are known matrices, with |®] #Z 0.

Assume that at step K the state pdf and characteristic function are given by fx, Xk and @x, Vx . The pdf of

Xk+1 18 determined by u(sing the linear transformation
Xi+1 C 071 -0 TXke1
(C.1D) _ ..
Wk 8 r X\Aﬂ )\5\7} = 5 | Wk
ai T =lot |
in the joint density fx,w Xk,Wk =fx, Xk fw Wk and finding the marginal density [11] as
(C.2) e Xkrr = OO0 i, D71 = 7 Twie fw wic dwi.
—oo
The characteristic function of Xk+1 1S given by
(C.3) PXpr V = O71 D o, O = TN Twk fy wi dwi eIV g
—oo —oo

Interchanging the order of integration, and using the substitution Xk+1 = OXxk + T'wk = dxks1 = | D |dxk, the

integral in (C.3) 1s solved as

(o]

PXprr V= 0

— 00

(C.4)
D (o)
=1

— o0

oo

o, T
fx, Xk el (PXHTWr) gy, [ fiy wi dwi

— 00

0o

o, T
fx, Xk el PxXxgy 0

— o0

fw Wk ejVTerdejz(pxk o Ty ow I'v .
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Abstract—The conditional mean estimator for a n-state linear
system with additive Cauchy measurement and process noises is
developed. For the multi-variable system state, the characteristic
function of the unnormalized conditional probability density
function is sequentially propagated through measurement up-
dates and dynamic state propagation, while expressing the result-
ing characteristic function in a closed analytical form. Continuity
of this characteristic function and its first two derivatives at
the origin of the spectral variable is proven. It is then used to
determine the desired conditional mean and conditional variance
in a closed analytical form to yield the sequential state estimator.
A three-state dynamic system example demonstrates numerically
the performance of the Cauchy estimator.

|. INTRODUCTION

In many engineering, economic, telecommunications, and
science applications the underlying random processes or noises
have significant volatility, which is not captured by the light-
tailed Gaussian probability density functions (pdf) [1]. Heavy-
tailed distributions have been shown to better represent these
volatile random fluctuations. Examples are radar and sonar
sensor noise [2] and air turbulent environment noise [3]. Our
objective is to develop a filtering technique for linear dynamic
systems with heavy-tailed distributed noises while using a
particular distribution out of the class of symmetric a-stable
distributions [4]. Particular distributions of this class are the
Lévy, Gaussian and Cauchy distributions.

The use of heavy tail (Sa-S) distributions was demon-
strated to yield improved filtering and detection results when
processing radar signals [5]-[7], radar glint [8], data in a
multi-user communication networks [9] and aircraft naviga-
tion [10]. These results and the degraded performance of
the standard Gaussian estimators when exposed to impulsive
noises motivated the derivation of a sequential non-linear
estimator for scalar linear dynamic systems with additive
Cauchy process and measurement noises [11]. This result was
based on propagating the conditional pdf (cpdf) of the system
state given the measurement history.

Unfortunately, the recursion scheme for generating the cpdf
directly for a scalar linear system [11] does not generalize
to the vector state. In [12] a similar estimator was derived
by generating the characteristic function of the unnormalized
cpdf (ucpdf) in a recursive scheme. This approach is somewhat
simpler than the scheme in [11], allows for a stronger result

regarding the decay of the estimator parameters with time, and
can be generalized to the multi-variable case.
The generalization of the characteristic function of the ucpdf

approach [12] to the multi-variable case is the essence of this

Jason L. Speyer
Mechanical and Aerospace Engineering
University of California, Los Angeles
Los Angeles, California 90095-1597

Email: speyer@seas.ucla.edu

paper, which is organized as follows. The estimation problem
for a n-dimensional, discrete-time, linear system forced by
scalar Cauchy process noise and a scalar measurement with
additive cauchy measurement noise is formulated in section
Il. In section Ill, the characteristic function for the ucpdf
of the system state conditioned on the measured history is
computed sequentially for the first measurement update and
a time propagation step. This motivates the general form of
the characteristic function for the ucpdf given in section IV,
which is shown to be continuous and twice differentiable in
section V and vyields closed-form analytical expressions for
the minimum variance estimate of the states and the estimation
error conditional variance. In section V1 a three state system is
used to exemplify the performance of the sequential estimator.
Concluding remarks are given in section VII.

Il. PROBLEM FORMULATION

We consider the single-input-single-output multivariable lin-
ear system

Xk+1 = Oxx + Twyk,  zk = HXk + vk, D

with state vector xx € R", scalar measurement zx, and known
matrices ® € R™" I € R™, and H € R¥™. The
noise inputs are assumedto be independent Cauchy distributed
random variables. Specifically, w is assumed to be Cauchy
distributed with a zero median and a scaling parameter 8 > 0.
Similarly, vk has a Cauchy pdf with a median of zero and a
scaling parameter y > 0. The characteristic functions of these
scalar noises are assumed to be time independent and given
by

Pow v :e“Blﬂi Qv v :e_Vlvl_ (2)

These characteristic functions have a scalar argument v. The
initial conditions at k = 1 are also assumed to be independent
Cauchy distributed random variables. Specifically, each i-th
elementxy;oftheinitial state vector x1 hasa Cauchy pdfwith
a zero median and a scaling parameter ai >0, i=1,...,n.
The characteristic function of the joint pdf of the initial

conditions, which is a function of a n-dimensional spectral
variable v € R", is given by

n / \
n — . .
P, v = e Mi=exp —  av
i=1 i=1
1/ \ I
[Lexp = " pll(at,v)l +J(bll,V) )
1 1

i=1
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The last form was introduced for notational convenience to be
used in the sequel. We used the definitions

pl 1 ) 1

i=a, a=e, i=1,...,n, by ={0}, @)
where e; is a n-dimensional i-th unity vector and {0} is
n-dimensional vector of zeros. With this formulation of the
system, our goal is to compute the minimum variance estimate
of xx given the measurement measurement history, i.e., yk =

Zl P Zk .
I11. INITIAL DERIVATIONS

The method proposed to solve this Cauchy estimation prob-
lem entails propagating the characteristic function of the cpdf
of the state vector given a history of measurements. Evaluating
this characteristic function and its derivatives at the origin of
the spectral vector v will provide the desired state estimate and
its error variance. The characteristic function is initiated by
the expression given in (3). It changes during a measurement
update when a new measurement is processed, and during time
propagation affected by the process noise input. We begin by
showing how this characteristic function is computed for the
first measurement update and time propagation step. This will
suggest the general form of the characteristic function and

hence the general estimator.

A. Measurement Update at k=1

The characteristic function of the initial state x1 conditioned
on the initial measurement z; = Hxy + vy is given by
rbo

i T
Oxazs V = Txuz Xalza elvixagy, (5)

—oco

where fx, |z, X1|z1 =fv z1 —Hx1 fx, xa /fz, z1 and
rOO

fz, z1 = fv z1 —Hx1 fx, X1 dxai. (6)

The subsequent derivations can be simplified by avoiding the

division by fz, z1 , thus addressing the unnormalized cpdf
and its characteristic function defined by

fxllle1|21 =fx 1z xi|ze fz 71
=fv z1 —Hx1 fx, x2 , (7)
and
_ | S
(Xyze V = fv z1 —Hx1 fx, X1 e/"’Txldxl. 8)

When the actual (normalized) functions are needed for, e.g.,
computing the state estimates, the normalization factor can be
easily determined by evaluating ¢ x,,z, Xi[z1 at v = {0}n,

i.e., fz, z1 =(EX1IZ1 {0}n .

Using the derivation in Appendix A, the n integrals in (8)
can be expressed as the single integral
re

Xz, g P v-HTD v -0 edn, (9)

—oco

where @v - and @x, - were defined in (2) and (3), respec-

tively. Hence (9) can be restated as

1/ \

- NG n . .

'Xalze VOF T pill(ai,v)—HainI
i=1

—oco I

=ylnl+j zi —Hbi n dn. (10)

This integral is solved using the general result presented in
Appendix B. For that, the coefficients of i in the absolute value
term of (10) have to be normalized to one. Clearly, this cannot

be attained if some of these coefficients are zero. Hence, we
a‘lslsume that Ha' /=0, i = 1,...,n, or equivalently that
a 1

the elements of H are nonzero. With this assumption, (10) is
restated as

- e
"XalZi oy o= o
re ;77 n+1 \
X exp —  pil(wv)—n|+jan dn, (11)
. i=1
where we. defined1 L
Pi=PiHa |, w=al(Ha), i=1,...,n, 12)

Pn+1 =Y, Mn+1 = {O}n, (1 =271 — Hbll.

Using the result in Appendix B, while associating & and z in
the later with (i, v) and {1, respectively, the integral in (11)

is evaluated as

_ n+1 ( (
(xalziy = gl (V) eP Y () . (13)
i=1
where the coefficient fur]ctions g%ll(-) are given by
gl 'yt RO ¢ e
i gi (v) = o €1+ pi+ Ygi (v)
— ¢ = pi+y (V) (14)
The arguments of gilll(-) and the exponents in (13) are
11 n+1
Yo ) =""psgn((ai ), (15a)
=1
I=i
n+1
y1|1 S
a == _pl@wl+i v,  s)
I=i
where, while usi?g (12),1for R /=i we have defined
L2 & j/=n+1,R/=n+1
L i
a = Hal Hal i=n+1 (16a)
1
Ha
1
7o a
Q_ Hal R=n+1
0 i
11 D(Zl_ Hbl al +pt i/=n+1
b, = Ops 1 Hal (16b)

1 i=n+1



To simplify the notation and subsequent derivations, specif-
ically to avoid the R /= i exclusion in the sums of
(15),
the elements in these sums are renumbered sequentially, i.e.,
R € [1,n] for each i-th term. The renumbered vectors a; will

be denoted by ailll. To accommodate subsequent derivations,
the coefficients p in the sums of (15) will be marked differ-
11
i

ently for y;'il(-) and ylelil(-): we will use g~ for the former

and p-lIl for the latter. The parameters z and pi in (14) will be

1
denoted by ¢t and ai, respectively. Finally, the number of
= n+1, while

terms in the sum of (13t) will be denoted by ny'™ =
the number of elements In the sums of 2115)( will be marked

11 11
by n "~ _ n. Although at this stage all the counters n_, are
the séme, as will be Seen in the sequel, they may be different

BperFfeEstintets He*eAGreber M BUGAHRE L ochifEry e

and ni'il seem to be related to each other (the former is n+1
while the latter are n), they will exhibit irregular changes and

thus were introduced separately.
With these notations and renumbered parameters and vec-

tors, ¢x,|z, Vv is restated as

¢ (

m o, = 11 11
X1lZs R R R O/ )
where
|
g1|1 (y1|1 1 (_ 11 11 11 -1
i gi ) _ZTT J(Ci +d; *Yqi v)
11 11 11 -1
— g —di +yg (V) (18)
and
n&it
W = gMson @™ v) (192)
=1
neft
y1|1 11 11 o
o (V)=— pi (g ,v)|+jb ,v). (19b)

=1

It is interesting to note that the initial characteristic function
in (3) is also expressed in a form identical to that given in
(17). The initial parameters are: n® = 1; g* = 1 (and thus

there are no ¥1 , arguments); nt ="n; the pafameters p’ and
the vectors al &nd b are given©in (4).

1
Remark 3.1: The special cases when some of the conditions
Hal /=0, i=1,...,ndo not hold can be handled

similarly,
to yield results that resemble those presented above. These

cases are not presented here for brevity.

B. Time Propagation to k=2

Given the time propagation equation xo = ®x1+I'w1, while

thg ucpdf of x2 given z1 is given by

( Xalz1 V ='_X1|Z:L (DTV Pow I'Tv (20)

1/1

n, ( (

_ 1|1 1]1 T 111 7T
= g [ Yy

a6 (@ V) exp Y (D ) —pr,v)|

The last expression in (20) can be expressed in a form that
is similar to the one given in (17). For that, we make the
following observations that lead to the definitions of new and
time propagated parameters and vectors.

1) « Xz|za Vv is expressed with the same nuqﬁer of terms
B Py iz V- Hence, we define ny = n;

.. . 11, . )

2) The coefflclzllfnt fungltllons g i ( )i or spetflflcaI% the q?l

{jazrlgeters %in _and d , remajp as in (18),ie.,¢ =¢; ,

i =d i€ [1,...int 1. There are only changes

in the arguments of gli| (+). For notational consistency

we will denote the updated coefficient functions gzill(-)

while remembering that

g2t 111
3) The parameters g~ and p™ used to define y~'~( ) and

Y i i 212 11

o (*) in (19) are also unchanged, i.e., p; = p; ,

2|1 11 211 11

9" =q , i€ [1,1r1.,nt 1. le:'l[l,...,nei |
4) The arguments of y~'(-) and y~'"(-) are multiplied by

gi eiq|1 11
®T, hence affecting the vectors a; and b, as
1/1
1, . T nei 2|1
Ygi (@ V) = a sgn (& ,v) , (22a)
=1
n&ft
21, 21 21
WOV == P v+ v), (22b)
=1

thlrle we used thezﬂefinitions azi|l 1|=1 q)a%lly bi2|1 —

®b, ,ie[l....n ’r] Re [1,...,ne<d]_._
5) The exponents are a function of an additional element

—B|(T,v)|. Hence, the nﬂrlnber of elements that de-

fipe the ney argument y, (-) increase by one, i.e.,
ngﬁ = nil\iﬂ+ 1. The parameters and vectors that

define these new elements are p°L =8, a°% =T,

inze/il lnze/il
ie 1,...,n2t|1]. For consistency, and to facilitate the
subsequent manipulations of the characteristic function,

the number of elements in the sum of the new arguments

y;'l(-) are also incgﬁased by one, while intrgﬂucing the
Zero parameters g o = 0,i € [1,...,n;"]. Hence,
ingj

with these new elements, the arguments y29|i1(-) and
v2|1(-) are defined as

néit
= ¢son (@ v) (233)
=1
né&it
21 21 21 211
using the r esult of Appendix C, the



characteristic function of Vei (V) =— pi (& .v)|+jb ,v). (23b)
=1



Using all the time propagated and newly defined parameters,
(20) is restated as

n#/t (
%’le v = g2t 21
X2|Z1 i g (V) &Py, (v) (24
i=
where
(
211\ 211 IC2n 210 on -1
gy 1 L
i gi (V) :; ICi +di +ygi (V)
m
— jGt -t +y2(v) Tt (25)

with arguments yzlil(-) and yzelil(-) given in (23). Overall, we

have obtained a form which is similar to the one in (17),
determined after the first measurement update in the previous
subsection.

C. Summary of Initial Results

The above derivations demonstrate that the characteristic
function of the ucpdf of the state xx at time steps k = 1 and

2 is expressed as a sum of n; weighted exponential terms.
The number of terms increases during a measurement update
and are unchanged during a time propagation step. In each
such term i, the exponents and their weights or coefficients
are functions of a sum of ne elements. The number ne;
of elements normally increases during the time propagl_ation
step and are unchanged during a measurement update. Those
observations provide the insight and guidance on how to
construct the characteristic functions at any time step k, as
is discussed next.

IV. MEASUREMENT UPDATE AND TIME PROPAGATION:
GENERAL CASE

The initial results presented in the previous section suggest
the general form of the characteristic function of the ucpdf of
the state at any time step k given a measurement history. Con-
sequently, we assume that at any time step the characteristic
function of the ucpdf of the state xx given all the data history

upto k, e, yk = z1---zk , is expressed as
(_k|k y =”¥lk kik ( K|k
Xk| Yk i gi (V) exp Yei (V) ! (26)
i=1
where
. k—1|k—1( K|k klk
k|k( klk 9 . y gigv) + hi
9 ygi ) = 2]#? “jc
i "('di +Ygi2(V) 0
k=1lk—-1  k|k K|k
—rkik in(v) —h O 27)

j [
i —di Fygia(v)

and
nif* (
Yo = _ q¥son (@) eR, (284)
nk(k
yklk e kk Kk KK
a V== (& v)I+ib ,v). (28b)

=1
As will be explained below, ylélkd(-) and gkik are k dimensional

Kk * K|

1
vectors. When evaluatinglg ygik () in(27), the argument

Kk, | . - Klk . . .
ygil (+) is partitioned as foI_Iows_: ygilllz-) isak—1 dlmensmn_al
vector constructed from its first k — 1 components, while

the scalar ykl.k((i,) is its last component. Also, the source of
the indexe<9'# Klk

i and offsets h; will be detailed in the
measurement update step. The initialization of this function
at k = 1 is performed based on the results derived in
subsection 111-A. Now we will perform one time propagation
and one measurement update and show that the above form is
maintained at any time step.

A. Time Propagation from kto k+ 1
The characteristic function Prraivi V of the time propa-

gated state xk+1 = Oxk + ['wy is determined using the result
in (C.3) of Appendix C and is expressed as
CXarlYe V= '_XkIYk o'y ow Mv (29)

nk/k ( (

_ Kk \ klk
= g

y T Kk T
i gi (@ v) exp

Yei (@ v)=BI(T.v)]

i=1

The arguments of the coefficient functions g'i‘lk (-) above and
those of the exponents in (29) are redefined as

nkik
k(W= g¥sgn (@at

=1
k/

PRI, )| = I V] + i, ).

=1

V) (30a)

Yot m = -
el

(30b)

With these definitions, (29) can be restated as
- ng’* klk ( k+1lk (
¢Xk+1|Yk v = gi ygi

i=1

K+1|k
) exp Yei (V) .
31)
which clearly has a form similar to (26). Specifically, defining
the time propagated parameters similarly to the five-steps pro-

cgdyre outlinegl in segtipp 111-B jncluding the new parameters

rr = , h = h; ', the result above can be

1 1
restated as

_ nkrl/k ( (
k+1]k k+1|k
Ptz V= gty (v) expyketie(v)

32)






where

k+1]k | k+1]k
g y
i gi ) (
k=1lk-1 * k+1]k k+1]k
1 @grl«l/k gil v) + i
= 2m JCk+1|k k+1]k k+1]k
i +a +VYgi2 (V)
k-1]k-1 k+1|k( V) — k+1|k
rk+1/k g'l
T k+1k kil k+1|k (33)
JCI _di Ygiz ()
and
nkrt/k ( k+1]k
ik (V) = g ksgn (a; ,v) €R<, (34d)
=1
nk_+1/k
yk+1|k el k+1lk  k+1]k ) k+1|k
i (M)=-— Pi (& V)| +j(b V).
=t (34b)
The number of terms that define (px 12 in (32) is

identical to that of (p in (26). However, the number

of elements needed to deflne the arguments of those terms has
increased by one, i.e., nk+l|k ';'Ik +1.

B. Measurement Update at k+ 1

The measurement zk+1 = HXk+1 + Vk+1 is processed next

to determine @x, ., |v,.. -, Whereyk+1 = 71 Zk+1 .
Using the general result in Appendix A,
f Xk+l|Yk+1 v = (35)
re . ( )
1 - v-H'n exp -yinl+jz n dn,
- k+1
27.’._ Xi+1 | Yk

where « Xwalzi © Was determined in (32). This integral was

solved in (B.2) of Appendix B. This result indicates the& each
term in the sum of ¢ - in (32) generates n +1

Xi+11Zk
terms in_« Xue1lYwea V o the index r; indicates which
term of « Xir1|Z generated the new ones. In addition, this
parent term is called with an offset, denoted as Q; in (B.2). In
the final result, this offset will be denoted as hk Hierd . Finally
we note that the coefficient function of the exponents in (B.2)
have two input arguments: the sum in the numerators (with the
offset) and the sum in the denominators. Grouping those two
arguments into one, we te the in tor to the updated
coefficient functlon % Qﬁﬂq (1) as y[?}!h}{ﬁ?_ (). Clearly, each
measurement update i mcreases the dlmenﬁhgn of this al[gument,
and hence the deduction in (28) that y™ (-) and g™ are k
gi

dimensional vectors. Similarly, the updated yk+1“‘+1() and
Ak+1lk+1 will be of dimensionk + 1.

After the integration, reordering terms and defining updated
parameters similar to the procedure outlined in IlI-A, the

K+1]k+1

measurement updated characteristic function is expressed as

k+1/k+1

— nt
|xk+1|\{k+1 v = gik+1|k+1 ykg"l'llk"'l(v)
= (k 1|k+1
+1|k+
X exp Ve (v) , (36)
gk+1|k+1 yk+1|k+1
i gi (V)(
k|k k+1|k+1 k+1]k+1
1, pener Jgn (V) +hy
=21 ]éﬁkﬂ—kﬂkﬂ—kﬂkﬁﬂi
+d + Ygiz (\5)
k|k k+1|k+1 k+1|k+1
J
i _d +yg|2 v)
and
k+1/k+1
yk+1|k+1 ei k+1]k+1 k+1|k+1
gi (V)= Qi sgn (4 v) » (38a)
=1
nk+1/k+1
y|<+1||<+1 ei k+1lk+1  k+1]k+1
ei v)=- Pi 1€ V)|
=1
(38b)

+j(bk+1|k+1, V)
The above results clearly show that the form of the character-
istic function proposed in (26-28) for the time step k is also
maintained at k + 1.

V. CONDITIONAL MEAN AND ESTIMATION ERROR
VARIANCE

The minimum conditional variance estimator of xx given
the measurement sequence yx = z1---2zx is the conditional
mean of xx given yi. It can be determined by evaluating the
characteristic function of (26) and its derivativesat v = {0 }n,
or as v = {0}n. In this section we show that @x, v, * is
twice continuously differentiable and give explicit expressions

for_the conditional mean and the estimation error—vanance .
The continuity of the first two derivatives of ¢ is

proven by induction. The characteristic function (p::k'ZYk v is

given by the convolution integral in (11). Using the definitions
in (4) and (12), (11) is rewritten as
1 T

'Xazi VT, N

ailvi-nlg ~vinl+izingp
_. =€

(39)

where 7 [, (pi,v) and V. = ¥ The mtegrand
of (39) is a continuous function of n and v.V| =1,.

Moreover, it can be shown that its first and, by a change of
variables, its second order partial derivatives with respect to
any Vj are piecewise continuous and bounded. Consequently,
Pxqjz, V is twice continuously differentiable with respect to

v [13]. Since v is a linear function of v, f;x1|zl v s twice
continuously differentiable with respect to v.



The time propagated characteristic function at k = 2 of (20)
is restated as

(plezl

v =@ Oy e BNV, (40)
X1|Z1

Since, as it was shown above, @x, |z, v is twice continuously
differentiable, Prsizs ®Tv s also twice continuously dif-

ferentiable for any transition matrix ®. Clearly, cﬁxﬂzl v is
continuous, being a product of two continuous functions. How-

8ve=sinee thenfirstsderivativaph,e - x5 | 45 NObSORLINHAYS
any moments. This implies that we cannot compute a priori
estimates of the state x> given only the past measurement z.

The characteristic function at the second measurement up-
date given the measurement history y> = { z1, z2}, while using

the explicit form of (40) is given by

CXolYy V=
r= T ya-BIT
1~ (v — HT e P rv-Hrnlg-vinl+izzngn - (42)
27-,-_ X2 |Z1
where @ ORI ®Tv . Note that if HI = 0,
X2|Zl T Xllzl

the term e v would came out of the integral in (41).
Consequently, in this case ¢,,>, v would not be contin-

uously differentiable with respect to v, and there would be
no minimum variance estimate of xx given yk for all k > 2.

Therefore, HI /= 0 is a necessary condition for the
continuous

differentiability of @x,;y, v and the existence of the desired
estimate of the state x« at any time step k.

It was shown earlier that | x|z, (v — HTn) is twice
continuously differentiable with respect to v. Moreover,
e BITT v-HTl has a piecewise continuous and bounded first
SRR VA1) LRSS L RN S RS B RINGe b tm b DS A0
bounded first and second order partial derivatives with respect
to any v. This implies that ¢x,z, v is twice continuously
differentiable with respect to v [13].

In a recursive manner, the continuity of the first two
derivatives of the characteristic function can be shown to be

maintained when propagating from any time step k to time
step k+ 1, as it was maintained in going from times step 1 to

. ‘ ® 26) is twi
SR SRR A% L vttt the ShR aytsits
to show that so is c} _ V.
Having established“thdt ‘%" v

Xk|Yk
differentiable, the explicit form of the pdf of the measurement
history, the conditional mean, and conditional variance is

determined from (26-28) by evaluating Cxilvie V and its
derivative as v — {0}n. We choose v = Vv, where is a

positive scalar such that — 0 and V is any fixed direction
in the v domain for which (aik'k, ?) 0, VY (i,R). This
£

klk

condition avoids t?e discontinuity issues of sgn (a;", 7)
Choe.;gee\é?lu‘%tlgan' (étk'”(,k 5) a@ S|tgsn fém}t%&s. ’|tgi this
, .

is twice continuously

are

well defined constants that satisfy |s'| = 1. From (26-28),
along this direction is given by
ni/k
Vv =
i=1

U Xk|Yk

(
Xl gk V(D) exp YT T) L (42)

. klk N .
\(% %gér}%f&%c)tf%?g g; (-)aregivenin (27). Their arguments,

K[k

Nei
i s =Yg (V).
=1 KK i klk

Ygi (V)= (43)

k|k
. . klk
Since the vector ¥ is constant, the arguments y; (-) and thus

the coefficient functions g'i"k(-) are constant along the chosen
direction.

Similarly, the arguments y'e‘!k(-) of the exponents in (42),
defined in (28), are manipulated as follows

k/k

ei

Kk Kk Kk Kk
Yei (V) =~— pi (g , V)| +j; , V) (44)
=1
u K/k 0
Nei k k k K
k k k K
S LA N B« N N
1 i S(& ,v)+j" V) = (yu (V),7),

where we have defined

K[k

Nej

7 @) = -
ei i i i
=1

psia + jbkik, (45)

_klk .
Sj(rﬂge ¥ is constant, so is the expression (y,; (V), V), making

Yei (+) of the exponents linear in  along the chosen direction.
Using the above results, (42) can be restated as

n';’k ( (

klk |, k|k
y
gi

v klk
Xk|Yk _._1 i (‘7) exp (yei (V)’V) '

The conditional mean of the state xx given the data se-
guence Yy is given by

(46)

1 o0

Rk = E[xk|yx] = . (47

Jfvi Yk
=0

The pdf fy«x yx needed to normalize the above result is

determined by evaluating ¢, v, V at = 0. Using (46)

nk/«
— ~ KIK ,~
MYk = Oxvc 7 _ = o™ yg @ . (49)
i=1
(4ér)hesc;ﬁrci\e/agy|§ 6;k§%kak N ditlﬁrmined by differentiating

i
derivative can be easily determined. Evaluating it at

gi (V) and (yg (V), V) are constant, this
=0

yields the minimum conditional variance estimate

nk/k
t
.1

Xk =

IR

g™ yi@) vE@). (9

i=1






The second conditional moment of xx given yi is determined
by _
1 & v
Elxkx" lyk] = - XelVie
“ 2fvyic a( A 0)T

The second derivative in the above equation is easily computed
by twice differentiating (46) to yield

(50)

Elxx! lyk] = (51)

1 ”‘kk/|T< ( Kk ( Kk ( T
s 0 Vi@ Y@ o
J2 fYk Yk i—1 gi ei ei
Finally, from (49) and (51), the variance of the estimation
error ~||< = Xg — Xk can be evaluated as EXXTJyk] =

E[xkx" [yk] — XkX' .
[ ky] .
VI. THREE-DIMENSIONAL STATE ESTIMATOR

The performance of the proposed estimator was tested
numerically. The system parameters were chosen as follows:
© cl V

0 U 0 0
1.4 -0.6 -1.0 0.1 0 0 0.1
®=0-02 1.0 050,r=7 037,73 ="0.08",
06-06-02 -02 a3 0.05
H= 10 05 02,8=0.1, y=0.2.

The system has stable eigenvalues at 0.7 £ 0.3j and 0.8. It

is observable and complies with the necessary condition that
HI /= 0.

The simulation results are depicted in Fig. 1, showing the
estimation errors in 1(a), and the cross-correlation, process
and measurement noises in 1(b). It can be clearly observed
that the estimation error standard deviation depends on the
measurement sequence. Specifically, the standard deviation
increases when a large measurement noise is encountered, e.g.,
at time step #4.

VII. CONCLUSIONS

For a linear discrete-time system with additive Cauchy
measurement and process noises, an analytic recursion of
the characteristic function of the unnormalized condition pdf
was determined for the n-vector state estimator. It was then
shown that this characteristic function is twice continuously
differentiable, allowing the determination of the conditional
mean and the conditional second moment, from which the
conditional error variance is determined. This conditional
mean constitutes the Cauchy estimator for the multivariable
system. The estimator was then evaluated numerically for a
third-order example.
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APPENDIX
A. Characteristic Function of an Unnormalized Conditional
PDF Given a Scalar Measurement

For the linear measurement equation z = Hx + v =
iL, hixi+v, the characteristic function of the unnormalized

conditional density function of the state is given as

oo
— 1 T

fx x fy z — Hx €Y *dx. (A1)

lez\/:

—oco

The above resembles a Fourier transform of a product of two
functions: fx x and fyv z — Hx . Using the dual convolu-

tion property, this integral can be solved by a convolution in
the v domain between the characteristic function ¢x v of
fx x and the characteristic function of fy z — Hx , which
we denote by v v , i.e.

re

v = oy

—oco

ox v—0 @y 0 do. (A2

The characteristic function (Bv v is determined as follows
~ 7 \

n
n

owv= fv z— hx € =YXdx. (A3

e i=1
AUPSHHEIRG (ftedratitas (MvONARY ParryiBele YuiBaFRSUAIR

straight forward to show that
iz =0 ok v—HTn @y (N e“ldn. (A.4)
B. Integral of an Exponent of Absolute Values

The measurement update stage of the Cauchy estimator
entails evaluating a convolution integral of the following form

r~ /7, \
=9 _Qsn(E -
- 1/ \ !

n
Xexp - pl|¢ -nl +ijzn dn,

=1

(B.1)

where Q could be m-dimensional vectors. Assuming that the
constants £ are ordered such that ¢ < & +1, the integral
in (B.1) can be solved over the intervals § < n <€ +1in
which the sgn (-) functions are constants equal to =1 and the
absolute value can be removed from the exponents. Summing
those integrals yields the closed form result

oo 0 0
n oo " 0 0
= expoo- p | — &0 +jz&0
i=1 =1
o o=t i 0
o+ _QsnE —8)
=i
Xj_ n
SJETRT pson(€ ~6)
0
0 ': 0o
n 0
gu-Qi+ Qsgn(§ —-&- o
z = 0
- . (B2)
iz — pi+ P sgn(§ — &) H
1=t D@

C. Time Propagation of Characteristic Functions for Linear

Systems
Assume that at step k the state pdf and characteristic

functionaregivenbyf and @ , where vx € R",

The goal is to determiﬁﬁdxtlﬁe charaéfer‘i/s)fic function of the
propagated state at time step k + 1, given by Xk+1 = ®xk +
Mwy. It is assumed that xx and the process noise wx € R™
are independent random vectors. The pdf and characteristic
function of the latter are fw w and ow ww , respectively,

where vy € R™. ® € R™ and [ € R™™ are known
matrices, with || 0. Due to the linearity of the state

£

dynamics, the pdf of xx+1 is given as [14]

Fxer Xkv1 =

rfx, (@ X1 =@ Twe fw wk dw.
ot -1 -

—oco

(C.1)

Its characteristic function is given by

re re

(pXk+1 v = (D_l ka cD_le+1 _ q)—l er

—oc0 —oco

T

x fw wk dwge/ **tdxk+1. (C.2)

I_nterchangin%)the order of integration, and using the substitu-
tion Xk+1 = Oxx +Twy = dxk+1 = |®|dxx, the integral in
(C.2) is solved as

Pxes V =0x, OTv ow My . (C.3)
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Abstract—An efficient recursive state estimator is developed for two-
state linear systems driven by Cauchy distributed process and measure-
ment noises. For a general vector-state system, the estimator is based
on recursively propagating the characteristic function of the conditional
probability density function (cpdf), where the number of terms in
the sum that expresses this characteristic function grows with each
measurement update. Both the conditional mean and the conditional
error variance are functions of the measurement history. The proposed
two-state estimator reduces substantially the number of terms needed to
express the characteristic function of the cpdf by taking advantage of
relationships not yet developed in the general vector-state case. Further,
by using a fixed sliding window of the most recent measurements, the
improved efficiency of the proposed two state estimator allows an accurate
approximation for real-time computation. In this way, the computational
complexity of each measurement update eventually becomes constant,
and an indefinite number of measurements can be processed. The
performance of the Cauchy estimator was demonstrated numerically.

. INTRODUCTION

Dynamic processes involving uncertainty are frequently encoun-
tered in fields ranging from engineering and science to economics and
finance. It is often assumed that the uncertainties are described by the
Gaussian probability distribution, mainly because modern methods
and algorithms are able to handle such systems very efficiently [1].
However, in many applications the underlying random processes
have an impulsive character producing deviations of high amplitude
and small duration much more often than the Gaussian assumption
permits [2]. Examples of such processes include radar and sonar noise
[3] and disturbances due to air turbulence [4].

Impulsive uncertainties were shown to be better described by
heavy-tailed distributions, such as the symmetric alpha-stable (SaS)
distributions [5]. These distributions are described not by their prob-
ability density functions (pdfs), but by their characteristic functions
(CFs). They are of the form @) = e °“IVI“IHV \where o is the
scaling parameter, [ is the median, v is the spectral variable, and the
characteristic exponent a determines the type of distribution: a = 2
implies the Gaussian distribution, and a = 1 implies the Cauchy
distribution.

Estimation assuming Cauchy distributed noises has shown im-
proved performance over Gaussian estimators when faced with im-
pulsive noises. For estimating the direction of arrival of a signal
to a sensor array in [6], maximum likelihood estimators designed
assuming Cauchy distributed noises were shown to exhibit perfor-
mance very close to the Cramér-Rao Bound against SaS noises
with characteristic exponents 1 < a < 2. Similar performance was
observed in various applications, including processing data in a multi-
user communication network [7] and radar glint [8]; in particular, the
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a parameter for the in-phase component of a time series of sea clutter
in radar in [6] was calculated to be a = 1.7. A framework based on

these stable distribution models was developed in [9] and shown to
have significant improvements in performance against heavy tailed
noises.

The apparent robustness and adaptability of the Cauchy probability
model motivated the derivation of a sequential estimator for linear
scalar systems [10, 11], and subsequently for general vector-state
systems driven by Cauchy noise [12, 13]. The estimator for general
vector-state systems suffers from severe growth in numerical com-
plexity, limiting its use to a small number of measurement updates
and states. The aim of the current work is to develop an efficient
two-state estimator to process measurements more quickly, and to
arrest the growth in complexity in order to implement the Cauchy
estimator for an arbitrary number of time steps.

The methodology in [12,13] is based on finding the characteristic
function of the conditional pdf of the state given the measurement
history. This work follows that same procedure, and by exploiting
certain relationships for the two-state structure, we can greatly reduce
the complexity of the algorithm. The proposed algorithm was derived
inductively by working out the first three measurement updates, and
then deducing the general update process. In this paper, we present
the first two measurement updates, followed by the general recursion.
It has been checked against the results in [12, 13].

The CF is expressed as a sum of terms, each of which has two
components: a coefficient function denoted by G and an exponential

function with argument E. These functions are shown to have known
structures that persist across measurement updates, and parameters
that are contained in a set of fundamental arrays. The essence of this
paper is in deriving this structure and populating the arrays, which
allows for a drastic reduction in the complexity of the algorithm. We

begin by presenting the problem in Section I, and performing the first
measurement update for a general vector-state system in Section IlI.
Then, in Section 1V, we assume a two-state system and derive the pro-
posed estimator structure for the first measurement update, followed
by the first time propagation step in Section V. Section VI derives
the proposed estimator structure for the second measurement update,
and Section VII presents the general measurement update recursion
algorithm. Section VIII discusses the finite horizon approximation of
the full information estimator by using a fixed window of the most
recent measurements. Finally, numerical examples are presented and
discussed in Section 1X, and concluding remarks are given in Section
X.

Il. PROBLEM FORMULATION
Consider a discrete time, linear system described by

Xk + 1) = dx(K) + I'w(k),
z(k) = Hx(K) + v(k),

(12)
(1b)
where x(k) € R" is the state vector, u(k) is a scalar deterministic

input, z(k) is a scalar measurement, and w(k) and v(k) are scalar
independent Cauchy distributed process and measurement noise in-
puts. The noise inputs have medians at zero and scaling parameters
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of B and y, respectively, so that their pdfs are given by
B/

f ky =
w W(K) Wz(k)—JrBT' (2a)
_ym
fv V(k) = W (2b)
The characteristic functions of these pdfs are
ow () = e P, (33)
ov (o) =e ", (3b)

where o is the scalar spectral variable.
The initial condition is assumed to be a product of scalar, inde-
pendent Cauchy distributed random variables denoted by

r ai/1T

e (X(1) = _ - (42)
i (1) — Xi(1)? + ai
Its characteristic function is given by
L
ey = "e” !
=1 aivi +jxvi
(G \
=exp — a|vi] +ix@)'v , (4b)

i=1
where v; is an element of v € R". The algorithm’s structure is greatly
simplified by assuming that the median in (4b) is x(1) = 0, i.e., the
initial condition is centered at the origin. To preserve the generality
of the initial condition (4b), the system in (1) can be decomposed
into two systems, a stochastic variable initialized at the origin and
driven by w(k), and a deterministic system initialized at X(1), such
that

x(k) = X(k) + %(k), (5a)

z(k) = z(k) + zK). (5b)
The dynamics and measurement equations for xand X are given by

Xk + 1) = oxK) +wk), 2zk)=HxK)+ v(K), (6a)

XK+ 1) = dX(K), Z(k) = HX(K). (6b)
Then, the proposed algorithm can be applied to the system in (6a),
and the deterministic part in (6b) can be used to recover the state
estimate for x(k) from the estimate of xk) by using (5a). Therefore,
the presentation of the algorithm will assume that X(1) = 0 in (4b)
without loss of generality.

Finally, the measurement history used in the estimation problem
formulation is defined as

Zi =Az(),...,z(k}. ©)
The objective is to derive the conditional mean estimator for this

system. To do this, we find the CF of the pdf of the state at

time k given the measurement history Zk, denoted as @k (v). The
next section begins with the CF of the pdf conditioned on a single
measurement.

I1l. FIRST MEASUREMENT UPDATE

Begin with the first measurement update at k = 1 by taking a
noisy measurement of the Cauchy distributed initial state as

z(1) = Hx(1) + v(1). 8)
Here, x(le and v(1) are the Cauchy random variables. For a
scalar system, i.e. X(1) € R’, the conditional mean estimator has

been derived and is presented in [10]. For vector-state systems, an

approach based on determining the characteristic function (CF) of the
conditional pdf (cpdf) is used. Initial results for estimation of scalar

systems using the characteristic function of the conditional pdf were
developed and presented in [11, 14]. An algorithm for a multivariate
Cauchy estimator is presented in [12,13] and summarized here.

The CF of the initial state conditioned on the first measurement is
given by the vector integral

roo
QW= 2 cDIzane’ XDaxay. ()

—oo

The conditional pdf is computed from the joint distribution of x(1)
and z(1) using Baye’s Theorem [1] as

fxz; X)), z1))
Bty () |2y = 94700
1%, (D) X)), (1)

fz,(z(1
L HX (1) Fx, (1))

f @y

Z

Then, (9) can be expressed as

Joo

PIW) = gy @D~ HXW)
4_1|1(V)

xXfx, (x(1))e
where <_pm(v) is the characteristic function of the unnormalized cpdf
(ucpdf). Note that, since z(1) is known, fz . (z(1)) isa constant; since
@111 lv=0 = 1, then ¢ | | (()):f z(1))1( W)

11 v= _
Using the dual convolution property [15], ®,},(v) in (11) can be

expressed as n convolution integrals in the v domain between_the
characteristic functions of fv (z(1) — Hx(1)) and fx, (X(1)). The

CF of fx, (x(1)) is given in (4b). The CF of fv (z(1) — Hx(1)) is
denoted ¢, (v) and is given by

. B
-3
]

fu@m—  hxil)

— 00 —0o i=1

x e in1 ViXi(l)dX1<1) ...dxn(1). (12)

In order to proceed, we need some assumptions about the measure-
ment vector H @ [h, ... hy]. The first is that at least one element of
H is nonzero, i.e. there exists an i such that h; /= 0. This assumption
is a prerequisite for observability of the state. The second assumption
is that this nonzero element is hy,, which has no effect on generality
[16].

To carry out the integration in (12), perform the change of

variables: € =z(1) — 7’ hix; to write
i=1
( Nl \
Xn(1) = hlin z) —&—  hix(D) (13a)
df i=1
an(1) = m (13b)



This allows us to manipulate (12) as

oo o
® (V) = fv(§x
1 e n—1 \
R n— . z(DH—&—  j=1 hixi()
ej im1 Lvixi(1)+vn n 'E Xm(l)
O [hnlr
jrnzay
- elT 0ty ©emtdel
n

. dXp-1(1)

O

O
\
e e n-l (vi—hl vn Xi(1)

x .. g =1 hn dxi(1) ... dxn—1 (D . (14)

Here, the left parenthesis equals the CF of fy if the s é)ectral variable
is — " The right parenthesis is a product of Dirac delta functions,

o), glVlng
ei¥gzh Vh \nr—_‘l r ( N\

h;j
- Vi— —Vp
TR Th, o Gmo hn

i=1

w W) =
(15)
Using @x, of (4b) and @ of (15), we can express the first

measurement update ucpdf’s CF using the dual convolution property
[15] as

— e .
W = fix, XD @(1) — Hx@)e” *Vdx
o o
1 - 0
= G ®x (v —0) @ (0)do
_ > jon \
_em" ox v —oyem?V o, Lo,
@mn || hn
O N
X 0 oi- h—'on do; ...don-1 don. (16)
n

i=1

Integrating over o) ...on—; is simple due to the delta functions in
(16), and results in a single integral over the scalar on:

_ 1
o=
L 217 [
reo ( o On
X Px Vl_hlh:y---yVn—l_hn—lhn,Vn_O'n
i°nz() (—o \
X e Pn Qv \'ﬁ% do,
ree ( on ( \
1 14 HT On ejT _O'n do
ETITNI CRR  VAR F
(17)

Finally, we have a convolution integral involving the CF of the pdf of
the state, and the CF of the measurement. This result indicates that
the ucpdf’s CF for a system of arbitrary (finite) order conditioned
on a scalar measurement can be determined from this single, scalar
convolution integral. A simple change of scalar variables o = gn/hn
and do, = do |hy| gives the final form

- ;™ _

W= ox v - H'o) ey (—0)eZD%0,

—o0

(18)

Rewrite (18) using (3b) and (4b) as

Cpw =
11 oo I (

& \ |
1 M .
Py exp — o lp -0 +jz@)o do, (19)
2m i=1
=a EHT forf, 1,...,n =y, 19b
P € 1 P . y (19b)
Ev _
M= g forf, € {1,...,n} Hni1 =0, (19c)
th
mher%he pIsatrhees,dalarOYVnce)z];rttl1 v, m r?é?rﬂ)arltm%ctél% r\p%ﬁ g’}l\Petr?
vectors. The solution to (19) is given in [12,13] as
LR 5 B
(V) 2 G |1(V) e 111
m i=1
n+1 I;Q,L ) -
1 \"ep = U op p il iz
=27 - -
i=1 .
0g = o
Hh, ! 0
X EDTe L o s - B
B =1
/=i
0 -
-\nﬁl
0. 0
- lzO-pit P osga( — W) (20)
=1
) g

/=i
Thus, the measurement update process produces a sum of exponential
terms with coefficients in the brackets. For the two state system, as
will be shown, the bracket term can be reduced to a simple form
that is a polynomial of sign functions. Next, we present a structure
for expressing (20) for the two-state system that can be extended to
subsequent measurement updates.

IV. TWO-STATE ESTIMATOR STRUCTURE FOR THE FIRST
MEASUREMENT UPDATE

In the previous section we considered a system with a state vector
of general order n, and an algorithm for the general vector-state
system is presented in [12, 13]. However, that algorithm suffers from
a very aggressive growth in computational complexity with each new
measurement update. For a second order system there are certain pat-
terns and algebraic relationships that allow for significant reductions
in numerical complexity and allow the estimator to run effectively
over a large number of measurement updates. There are two main
aspects to this simplification: a way of expressing and indexing
vectors that multiply (as inner products) the spectral vector v in the
exponential argument in (20); and a set of algebraic relations that
can be used to simplify the coefficients of the exponential functions.
Both of these aspects are addressed here for the first measurement
update in (20) presented above. In Section VI the second update is
presented, indicating by induction the general measurement update
and time propagation recursions given in Section VII.

A. Exponential Argument

Consider the arguments of the absolute value terms in (20). The p
scalars are defined in (19c) as scaled inner products of v with vectors
we call fundamental directions. For the first measurement update,
these fundamental directions are the rows of the nxn identity matrix.
For the two-state system, the set of fundamental directions from the



initial condition is By = rEll 1 0 )
) = . In the subscript of

Bi o, the first element denotes the time step, and the second element
denotes the number of measurements that have been processed.

Inner products are linear operations, and hence a difference of inner

products with a given vector is also an inner product. This new inner
product introduces a new fundamental direction. This new direction

Befaie TS POIGHapty Tis Actitlon’ S e SERRTERIRYR" fdey 18

get

m mT T _m
U = Hm = 1oV — Byjov HB, | Byjpv - HBuroBlloV
T m_ T = mT
110 1ot HB, |, B, ,H

_ H BBy~ BiBm v

(21)

(BT"'OHT)(B | lOHT)

The key here is to recognize that the term in parenthesis in the
numerator of (21) is a matrix minus its own transpose, which implie?

- - - - - mT T m _ r
that it is antisymmetric, i.e., that B™'B — B "'B™ = 0 c
o o 110 110 —-c 0
for some ¢ € R. This constant ¢ can be computed and pulled
out of the matrix, which allows us to express any two-dimensional

p
antisymmetric matrix as cA where A = 0

01 and ¢ can be
verified to be

c=-B AB™. (22)
110" 110
Hence, we can write (21) as
mT \
—B1lI0ABII0
H = Hm = - HAw. (23)

Hl
(B ;TlloHT) (Bl 10 )

This produces the new fundamental direction is HA, scaled by the
terén In parenthesis. For the relationship in (23) to hold, B /= pm
an

neither i nor um can equal zero. In (19c) we also defined an extra
constant Y3 = 0. This implies that the old fundamental directions
are retained in the measurement updated cpdf’s CF for terms in the

exponent of (20) that involve p;. Therefore, the set of fundamental
directions for the first measurement update, denoted by By, is given

by

E
Bl|1 =U Ezl[. (24)
HA
In (20), we use (23) to express [, — | as
_u. - Ev _ Ev_ —(EAE
Mo — Hu Erl EnE (E-HE E])ngv
2 1 1 2
_ HAvV (25)

Using (25) and the definitions for p from (19b) in (20) yields

( 1|1(V) =
Glln(v) exp ~—M EH' HAv
EHDEHT) N\
Eiv . E1V
¢ VEm EOgm
2 T HAv
+
G1|1(V)exp —a ElH (E H )(E HT) \
T 2
BV P
-y +1z(1)
E,HT E,HT
+G? (V)exp —ap EHT Eiv
1|1 ElHT \
- EHT Ev
2 E HT
= @m(z}
Y ar . zZz(D
xexp = TE HIT 7 - JE b 1AV T E HESY
2
+Ginv) a ) \
1 z
X exp el - " uav+j 25Ey
|ExH J_Gz |EH | EH

W exp (—ai |[Exv| — ax |[Eav]).  (26)

Notice that each of the three terms involves only two of the three
fundamental directions.

The efficiency of the proposed two-state estimator is achieved by
both keeping track of which directions are used in each term, as well
as the scalar coefficients that multiply the absolute value functions
and the scalar coefficients in the imaginary part of the argument of
the exponential. The most important of these is an array of integers
where the elements of each row correspond to the rows of By, that
appear in the exponential argument. This array is denoted by M (1]1).

The exponential argument of the term corresponding to i = 3
in (26) is exactly the same as the initial condition. In fact, the only

difference between the initial condition and this term is the coefficient

G31|1. This is due to the cancellations that occur in general in (26),
so that one term produced from the convolution will always have the
same exponential argument with a different coefficient function. This
term is referred to as the old term. It will be shown later that the
old exponential arguments persist across measurement updates, and
therefore it is useful to order the terms with the old fundamental
directions first, so that the last term in (26) moves to the top.

Consequently, M(1]1) is constructed as

]1 2]
M|y =51 34, 27)
2 3
The other two terms, corresponding to i = 1 and i = 2 in (26),

are called the intermediate new terms; we say intermediate because
in all subsequent measurement updates, as will be shown, they
will combine with other terms with the same exponential argument,
and new because they involve the new fundamental directions just
generated during the measurement update.

Following this new ordering, we define two additional arrays
P(]1) and Z(lll? whose elements correspond to the coefficients
of the absolute value functions in the exponents and the coefficients

th
in the imaginary part, respectively; hence, the i  rows of P (1|1)
and Z(1|1) are related to the i™ term in ®,,,. For the measurement



(EHD(EHT updated ordering of terms used to define M(1]1) in (27), these arrays



are given by .
o (26} 0 0 O[

O a, O o 3 0
Paly = [ENT JEef . zaln= gf U . (@8
] y a; U 0 lZ U

1 0
B HT |EoHT| E HT

They have the same dimension as M(1]1), so that an element of
P (1]1) or Z(1]|1) goes with the fundamental direction indexed by
the corresponding element of M (1]1).

Finally, define a vector array of integers L;;; with as many

elements as rows of M(1|1). Each element of L;; indicates the

number of fundamental directions in that term, i.e., the width of the
corresponding row of M (1|1). For the first measurement update, L;|;

is given by

f 1
Lig=2 2 2. (29)

This final array is unnecessary in the first measurement update, but
will become essential later when different terms involve different
numbers of fundamental directions. Finally, define the number of

terms as Nyj;. Clearl¥, N;;1 = 3, the same as the number of rows
of M(1]1), B(1|1), (1|1£, and Ly

Using (24) (27) (28) (29) and the definition for N;j; = 3, the

exponential argument for the first measurement update ucpdf’s CF
given in (20) can be expressed as

N
"W M W M.
; \ i \ i
Eipw) = - Pi B, v +] ZiB,, v,
=1 =1
i€ {1,...,N1|1}. (30)

B. Polynomial Coefficient
Using (25), (19b), and (19c), the bracketed terms Gi1|1 in (20) are

of the same form, and each involves two sign functions, denoted
s; and s;, with the same arguments as the absolute values in
the corresponding exponential parts. Functions of this form can be
reduced to a four parameter polynomial of these sign functions as

ai+his;s;+jcis; +jdis,. These relationships are given in Appendix
A; for k = 1 in particular, Result 3 in Appendix A can be used to

obtain the four parameter polynomial by assuming that a™ = 1
1

and b™ = ¢ = d" = 0. The sign functions involve the same

fundamental directions as the exponential argument, so denote a final
array G(1|1) with the same number of rows as M(1|1) and width

four, and let each row contaiE the parameters fo& the polynomial, as
ap b1 C; d1

G(l Il) = Daz bz C) dzD .
az by c3 dy

(31)

Note that the same reordering used to form M(1|1) must be used
here, so that the top row contains the parameters for the old term’s
coefficient.

Using the parameters in (31), along with (24) and (27), the
coefficient function G{“ for the first update ucpdf’s CF given in
(20) can be expressed as a polynomial

Qg
sgn Bv +
VR . 2
v +idisgn BYliv

(
Gy)1(v) = ai + bisgn B'I’I'lil(v
jCisgn B

(32)

Remark 1: In the notation, for P, Z, and M the subscripts denote
the row (i.e. which term in the sum) and the superscripts denote the

that is indexed by the integer M;. It is assumed that P , Z, and M
inherit their time index from the associated fundamental directions
from B.

V. FIRST TIME PROPAGATION

In this section the characteristic function of the cpdf is propagated

gﬁgﬁgktrtﬁéjgwgc%g}v%] éq\,é%abyAfs)s(ume that at an arbitrary time
k), its CF is given b
Pk|k (v), and that the process noise CF"igXéie)enlas n (S!a).g%e pd¥
of x(k+1) is determined using the linear transformation of the joint
distribution fx, w (Xk, wk). The details of this derivation can be

found in [12,13], and the formula for the characteristic function of
the propagated cpdf is given by

T T
Pr11k(V) = Pik(@ VP ). (33)
Note that the derivation of (33) in [12,13] requires that ® be
invertible.
Applying the time propagation equation (33) to the characteristic
function of the first measurement update given in (20) yields

©(V) = @y @ VoW (T v)
o @ve vy @ W
111 w

—2l1
fz -

Z
1(Z(1)

(34)
f )

Then, the ucpdf’s characteristic function for the propagated state is
given by

| 2“(\/) = (;u,{\(.?bTV)goW (FTV> — g;lll(cDTv) . e’ﬁll" TVI
111 i
_ Gl

= T Eill(q’Tv) -8B FTV

1(® ve

0
i i
= GI O 'r\“ M; T T

P vy exp = Pi Bjy® v-BTvVv

=1
cy

\
+j -2z BM
i

@Tv\ (35)

The changes in (_pg“(v) from (_pm(v) are a new element in the sum
of the absolute value terms, and a linear transformation on v. The

time propagation step adds no new terms to the sum, hence N,j; =
Nij1. Moreover, since the process noise has a zero median, the time
propagation has no effect on the complex part of the exponential
argument, so that Z(2|1) = Z(1|1). Finally, there is no effect on the
parameters of the coefficient functions G, so that G(2|1) = G(1|1).
The time propagated ucpdf’s characteristic function can be restated
in the same form as @1 ie.,

N
.\211

o w= "' G - efm, (36a)
2|1 2|1
i=1
where
i ( Mm! ( 2

G2|1(V) =aj+ bi(sgn lef V. sgn ?';IILI v

2
+jCisgn Bé\l/'lilv + jdisgn Bgﬂi v o, (36b)



column (i.e., where in the exponential argument it appears). Only

B, L, and N retain the time dependence in their subscripts. The
superscript for B denotes the row, i.e., the fundamental direction,

Exnw = -

L
.\QJJ



Z2|1) =2z,

0 0 . a (0§
0 O ai p)
B B[
. o |4 @
Pely="Paly  B= JEmT  JEHT B
B B
|E251T| BT
I Eidy
r T
By, = Bin® JEZ(D i
r HAq; (36d)
O
0 p oy
M2l = EIMaly  4H=01 3 44
4 2 3 4

Lz|1 = L1|1 + [1D = D3
1

The process noise introduces a third absolute value term, with a new
fundamental direction, into all of the CF’s exponential arguments.
The next section deals with performing the next measurement update
to this propagated structure.

VI. SECOND MEASUREMENT UPDATE

The secand measurement urﬁ)date process involves flndlng—the
characterlstlc function of the unnormalized conditional pdf, 1.e., ¢

. . 212
The formula used for this second measurement update is the sarrlle

as the first update, given in (18), and is applied to (36):

- _ 1 roo T joz(2)
MW= o (v — H 0)pv (—0)e”"“do
1 4= —viol
= ' ¢ w-Hoe """ 0. (37)
217 21

Since (;2“ is a sum of Naj1 = 3 terms, the measurement update
process is to solve the convolution integral Ny, times, once for each
term. Substituting (36a) into (37), we get

- 1 TR
‘ 2|2<V) - 7 G|2I1(V - H'o)
i=1

—oo
|

X exp E;“(v - HTU) -y |—-0o| +joz) do. (38)

Interchanging the integration and summation operations produces
Ny convolution integrals. As with the first measurement update,
each convolution will produce an old term as well as new terms,
called intermediate terms. Since many of these terms have the same
exponential arguments, they can be combined to reduce the total
number of terms in the CF’s sum.

Therefore, we begin with an arbitrary i convolution in (38).

Using (36c¢) we define

ree i
li= Gy -Ho
oo _ I
i T
Xexp Eyy(v—H 0)—ylo|+joz(2
_ rooGi T
= (v—H'0)
211
0
0
X exp - P B Mwv-t"o) —y|o
S 211
C, \" '\ !
+j ziBY v —H'0)+joz2) do. (39)

=1
In order to solve (39), we need to rewrite it in a manner similar to

(19) using p and p substitutions. Begin as in the first measurement
update by defining constants p obtained by expressing

M T i T
2|1i (V —H U) = B;?l (l‘l - 0)1 (40a)
and thus
BM
H= 2|1 (40b)
Bzu'HT

Next, we rewrite the argument of the exponential of (39) in terms of
these p s and o as

- Pi i T
=1

Bz‘lH “‘l _U|_V|_0|

+j(ZlBM“+ZZB'VIi2 v
( i %|1 i 201,
+jz@)-zBYHT - 228 HT o
i
( o ) '3'%1 211
= ZiB,y, +ZiB,, v

le|ﬂr']':4

- o |ln —o| +j6so, (41a)

=1

where the complex part multiplying v does not depend on o
and comes out of the convolution. The parameter definitions are

HL§|1+1 =My =0,
i 1 Mo 2 M2 T
6,=2(2)—ZB,,H —ZB, H - (41b)
and the Léll +1=3+1=4constants called p are given by
o = " Bz|1HT ellts Meqr,.... Nznzzssj; (41c)
% f,—L'2|1+1:4.

This is the same procedure used in the first measurement update
except that, due to the new absolute value term in the exponential
argument introduced in the time propagation step, there are now four
p constants instead of three. Moreover, there are three fundamental
directions in the exponential argument, instead of just two.

Let’s turn our attention to the coefficients of the exponents. The
coefficient functions for the three terms in @, are all of the form

; Mg
Gy (V) = ai + bisgn BJ. 'v sgn ¢ o v +

jCisgn lelv + jdi sgn B 42)



Hence the same manipulation used in (40b) to form the ps can be
used here to get

_ Cumioo w2 -
Ghi(v —HTg) = a + b, ByiH .B,'H
sgn
X(%(Sgn(ul—a)'f' sgn(ug—d) —1
(
+jcisgn BM%H(r sgn (U1 — O0)
+jdisgn BW,ZHT sgn(p —0), (43)

\{vhere the identity sgn (M1 — 0) sgn (2 — 0) =
7(sgn(y —0) + sgn(Mx —0)) —1is used.

In order to use the same integration method as in the first mea-
surement update, it is necessary for the coefficient of the exponential

term to be constant within each subdomain of integration %u v H D).
Since these coefficients are polynomials of sums of sign functions,

they are clearly constant in these regions. Now define the following
constants,

_ ( 2
bi = bisgn BM}HT . BMiHT ,

ai = ai, 2l 2
_ Cw _ Cw
pr=cisgn gyt P =disgn gIYT

p=1, D=1

(44)
Our integration method also requires that the coefficient involve
sums over the same sign functions as the exponential argument, which
has two more absolute value functions than the coefficient has sign
functions. To do this, introduce two more sign functions into the
sum in (43) by multiplying them by constants B = p = 0 and
0; = p4 = 0. Using these, the coefficient in the convolution can be
written with sums over the same p as in (41a):

0 0
. T 1 G v
Guv—H g)=75+b 32 . psgnp —o) -1
- \
- ('\4'_
+] P o)
CY i N
=Gy psgn(U —O), _IP sgn(ML —O)
=1 ('él \
=Gy,  Psga(l —0) . (45)

=1

Since the only difference between the summations in (45) are the
scalar p and p constants, we can simplify the notation and use a
shorthand p in (45) to represent all the summations. This notation
will become more useful in subsequent measurement updates as the
coefficient polynomials become more complex.

Using these substitutions, each of thei € {1,..., Ny} convolu-
tion integrals in (38) can be written as

G \

pPsgn( —O)
=1

>
Ii: GQ“

—oo

' N\
Xexp — Y p |y —0|+j60o Ej&)
2

ment update from [12,13] is

TR 9 LiQN»I -
li = \" exp i U
0- P lp — pm| +j6rumL
m=] =1
O [ #m O
L' 41
oo o1
DGt posgn( — )
0 =1
X =m
% o L l+l
6 +pom+ I
g 1%,7° " P segn(H = Hm)
- 0 /=m 0o
i 'gllﬂ O
G =ty P osgn(h — pm)- H
= 2
- N )
j6h— Pm + 2)1'“[) sgn (M _ Hm) %

=1
/=m

The convolution produces Li2|1 +1 = 4 terms, indexed here by m,

for each of the i terms in the sum in @, . The first three terms
are called the intermediate new terms because some of the terms
from different convolutions have the same exponential arguments and
can be combined by summing their coefficient functions together,
as will be shown. The last term Produced by the convolution that
corresponds to m = 4 is the old term because, since p; = 0,
it has the same exponential argument as the i term in @, that
was convolved. Simplifications of these terms and their coefficient
functions are addressed next.

A. Second Measurement Update - New Intermediate Terms

The terms corresponding to m € {1,2,3} are called the intermedi-
ate new terms. These always involve only two fundamental directions:
one is from Bj,|; and the other is the new direction HA as in the first
measurement update. The formation of the new fundamental direction
is what recovers the structure involving two fundamental directions,
as will be shown here.

Until the intermediate new terms are combined into the final
structure for the second measurement update, it is useful to denote the
exponential argument in terms of both indices i and m. Hence, for the
intermediate terms, denote the coefficient and exponential arguments
as G"™ and E"™, respectively.

=1



212 212
For the i'" term, use the definitions in (40b), (41b), and (41c) to
The solution to the i convolution integral for the second measure-  rewrite the exponential argument of (47) as
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/zm anHT'Bhlﬂ
201
+j—2Z2) BMf”v
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This final form for the new intermediate term’s exponential argument

involves only two fundamental directions: one that is a row of By

that corresponds to the M™ integersform € {1,...,L' =3}, and
i 211

the new vector HA. Moreover, the denominators of both terms are

equal. Therefore, we define the set of updated fundamental directions
as By, and construct it by appending HA to the bottom of B, as

(49)

B. Second Measurement Update - Recursive Structure of the Arrays
Denote an array of integers M (2|2) where the elements of a givéen

row index the rows of B,,, that appear in the corresponding term. Tt
rows o? fhe old terms will Le un%%anged, and a se o? ne\?/ rows w“

be appended to the bottom, each of width two. Since each convolution
produces terms involving one of the old term’s directions, the new
rows of M(2|2) will contain all possible combinations of rows of
B,|; with the new row in B,|; as

RS

O 0 5 5
Mels T3 ¢
o

I T S

o o o |

M2|2)= 03 5 = 02 5 . (50)

P4 58 B35 h
Ug 50 04 50
4 5 4 05
4 5

Each of the three convolutions in the second measurement update
produced four terms, the old term and three new intermediate ones,
for a total of nine new terms. However, from (50) it is clear
that we only have six distinct new terms with different pairs of
fundamental directions. This is because three pairs of terms, from
different convolutions, have the same exponential arguments and can
be combined into one term by summing their polynomial coefficients.

same_fundamental directions, the coefficients for the absolute value
functions are different, as will be shown next.

Now we construct an array of coefficients for the absolute value
functions in (t)he exponents.%—(rom &?5 a pattern emerges for con-

structing these coefficients. They are stored in the array P (2|2) that

is given by
P2l2 =
. P2l ; .
E—\; Gzldet@|+ﬁ E,® AT 9
; IEi®T gy [E;@TH| -
U Y aj |det®| +,6_EZQDTAF_ i
L . 0
O |E oTH| |E oTHT| a
_ Y detd + 8 T )
] y | | HAD AT g
o |HAGTHT| [HADTHT] —. (51)
0
O af a, E0" AT + @ Ex®"Ar i
I HHF =
: : r
14 a2
Al + HA® AT
R L it .
U |HT| - [HT| R
2 B, AT
y— y T + aj il
U | 2HT| | 2H>1-| HA®TAT -
[HT| [HT|

Next, denote the new array of coefficients for the imaginary part of
the exponential argument as Z(2|2). Since the time propagation step

has no effect on the imaginary part of the exponential argument,

this array always has width two, involving only the original two
directions, and it has the same number of rows as M(2|2). Based

on the same manipulations used to obtain the elements of P (2]2),
Z(2|2) is given by

0 0
Z2|1)
o_z 21 0
g - ! 0 g
e 0 §
E E,@THT @
oz _z(1) det @
- HADTHI HAGIHI - [
201 = . AN
z(1) - E ®'AT
) E&i 1 "
< ir -
f z1) 1
z(2) -7
0 . O
gn B AT
HI a HI

The usefulness of Ly, is more apparent in this measurement
update, since older terms involve more fundamental directions. It is
formed by simply appending an array of 2s of length six to Ly, as

f
_OT
I_ZIZ L2|1
=3 3

1p
2 2 2 2 2 2

1
3 2 2 2 2 2 2. (53)
C. Second Measurement Update - New Coefficients G

Consider now the new coefficient functions for the new intermedi-

211



These three combined pairs produce the first three new terms, and
thus they introduce the first three new rows of M(2|2). The last
three rows of M(2|2) are due to the time propagation step and

involves the I'T direction. Although these last three terms have the

ate terms produced by the i termof ¢ . Form =1and m = 2,
the numerators of (47) are not equal and hence cannot come out of
the bracket term. They are of a form compatible with Result 3 in
Appendix A. Denote the coefficient of the m™ intermediate term as



Gj[7. Then, the numerators for m = 1 are given by

- C s \
i \
Gy £+ posgnm — )
=2
I BN ¢ \, g
TATRO L Ea s T psen oy -1
=2
\
e
+] EFor+  psgn(l — M)
=a +bi( (R FRsgn(a —pH) 1
3
C o
+j o1+ prsgn (a2 — 1)
M2 T

1 N
= aixbisgn BQT;HT “By'H  sgn (HAV)

*jcisgn B;VIII%HT + jdisgn \B';/lllizHT sgn (HAV) .
(54)
BYSRTEAREAY (R ARY EnithIRDeafr de BysBetRiar. TReRiing

that B = 0, the new term obtained for m = 3 corresponds to the

coefficient
0 . a
i3 \" 0
G, 00+ —1'D sgn(M —H3)) =
3
ai+bisgn B, H' . BM‘QHT sgn (K1 — M3) sgn (M2 — Ha)

20
+jCisgn Bé\l/'l'leT sgn (M1 — K3) +

jdisgn B)VHT sgn (M — W)

MPT 3
=aj+bijsgn —B MilABZU sgn ( M]ABM?T
21 _BZ|1| 211
( Ml M3
. - >T
+jcisgn —B ot ABZIII

2
+jdisgn —B mi AB'Q\ﬁT sgn (HAvV). (55)

Substituting these into the bracket term in (47), and noting that
the real parts of the denominators are similar to the real part of
the exponential argument, yields a form that is compatible with the

numerator forms given in Result 3 to. E}roduce coefficient functions
for the intermediate terms denote% "M(v) and given by

212
( \

v +

C
G'z?% (V) = @im + bim sgn BMil,mv sgn g

212 212

: C N C \
jCimsgn BygmV " 4 jdimsen BygmV (56)
It is necessary to use Result 3 because the denominators in the
bracket term in (47) form two sign functions, in the same way

that the new exponential arguments (48) involve only two absolute
value terms. Therefore, polynomial coefficients for all of the new

intermediate terms can be expressed in the simple four-parameter
form of (56). Note that the two fundamental directions involved here
are the same as in the argument of the exponential. Hence, combining

two terms with the same expongntial arguments involves summing

their polynomial coefficien SG D which is simply summing the
212

corresponding parameters.

For the second update, three pairs of the nine new intermediate
terms can be combined, leaving a total of six new terms in addition
to the three old terms. The set of combined parameters for the

G(1]1), producing the new array G(2|2), which has four columns and
the same number of rows as M(2]2). Then, the coefficients for the

new terms (i.e.,those corresponding to i € {4,...,9}) are given by

i d 2
—a + b so ‘v
Gy;p(v) = ai + bisgn Bm sgn (o y )

1
+ jCisgn \5'2\?1' v +jdisgn \Bg/l'j v , (57)

where a;, b, ci, and d; are the elements of the i row of G(2]2).

D. Second Measurement Update - Old Terms

For f, = Lk|k—1 + 1 the constants {p,p } := p = 0, which

implies that both numerators in the bracket term in (47) are equal
and hence can be pulled out of the brackets as a common factor.
Therefore, the measurement updated old term is the same as the
previous old term, except it(s coefficient le multiplied by the new

bra@{“{\%@ a +b sgn BM‘IV sgn BM‘2V
1
212 P 212 212

. ( 1 ( 2 I.
) +jci sgn B'2\|/I2i v +jdisgn Bg{'zi v
Q: . 227 H-
x 1 [Dj@' +y+ \" "By H' sgn Byiv -

2m Pi )2 212

el =1

0 0_,0

- v ( ( N

Djel y + I p BMnu' sgn Miy, O .
-0 2= i oap lez 0

=1
q (58)

Since the new bracket term in (58) has three sign functions, it cannot
be manipulated using the results in Appendix A.

This implies that terms that have been created in previous measure-
ment updates retain their exponential arguments during the current
measurement update, and their coefficients are multiplied by new
bracket terms as in (58), with one additional sign function than the

coefficient had in the previous update. The difference between the
current time step and the time step when the term was originally
created is called the age of the term, and is given by Lk — 2.
Although this complicated structure grows, acquiring a new bracket
term every measurement update, the structure of each bracket term
overlaps significantly with the others, and thus can be expressed
efficiently.

E. Second Measurement Update - The Characteristic Function

Using (49) (50) (51) (52) (53), and denoting Ny, = 9 for the

number of terms, the CF of the ucpdf for the second measurement
update is given by

_ '.\{212 (
GpW) = G, (W) exp E;,(V) (59a)
i=1
where '.—%12 ('%. \
Ebp(v) = — M zZiBui v (59b)
pi piZv *1 212
=1 =1

and the coefficients are given by (57) and (58) for new and old terms,
respectively. Note that the first three terms in ¢, , correspond to the
old_terms and have the same exponential parts as the three terms
in ¢y The subsequent six terms are new and involve only two
fundamental directions. Although not used here, it will be useful to
denote the number of new terms in @, , 3™, ) = 6. This structure
second measurement update are appended to the bottom of G(2|1) =



repeats itself across subsequent measurement updates, and the next
section will present the two-state estimator’s recursion for the general

k™ measurement update.



ESTIMATOR RECURSION FOR THE k™ UPDATE AND
PROPAGATION

VII.

This section presents the two-state Cauchy estimator algorithm
for a general measurement update k. This algorithm as derived by
induction based on a study of the first three measurement updates,
of which two are shown here. It can be verified to be a special case
of the approach developed in [12, 13]. We first address the update at
time step k, and then follow with the time propagation step. Finally,
we show how to determine the minimum variance estimate and its
error variance.

A. Measurement Update

We-begin this section assuming we have a time propa%ated ucpdf’s
P and are given the” k™ measurement z(k). Consider

the following generalization for the polynomial coefficients Giklkfl

?rodu_ced for the old terms in the second measurement update. The
orm in (58) suggests that, in general, the time propagated coefficients

will have the form
) ( (
Gk-1(v) = @&+ bisgn B,\["LIV sgn Bﬁ/’fﬂv
2 -

: ml . \
+jCi sgn Bk|l:—1v + jdi sgn B

klk—1Y
L1 —3
n "' 1
X r—1 2 j9k7r+y+5'i(_r(5k|k—1v)
1
- - , (60a
jell<—r i 2 Sl|<—r<Bk|k71V) (602)
where
Sk—r(Bijk-1V) =
Lerix—r
N op B H' sen BY v, (60b)
i K—r|k—r K|k—1
=1
o I mi T 2 P T
S =zk—n—2ZB u —Zib_ g H ., (60)
and =7 5he l)ime-s'ted‘WWe_r'e the term involving ' was
k—r

created. The arrays M,L,P,B, and Z for the general update will
be constructed later but correspond to those of the first two updates
already shown.

Using the measurement update formula (18) with the correspond-
ing change of indices, @, |, is given by

_ NREL
PV =
i=1

T
L lk—1 (v—HoX

1|Gi
21T

LA :I
Cxpﬁk.k}kﬁ B  w-u'o) —y|-a| +j6 Ukj do. (61)
O i klk-1 -
=1

It is necessary to divide the domain of integration into regions in
which the polynomial coefficient is a constant and the exponential

argument is continuous. For this, the summations that appear in
(60) must involve the same fundamental directions as the expo-

nential argument. Since the top bracket term in (60a) is, the four
parametergpg]ynorrﬁzﬂ ?orme(} \9vhen the term Was( created, we can

define p and pm constants as in (44), where p = p = 0 for

f, :3,...,L:(|k_1 +1.
Similarly, the summations in (60b), from the rest of the bracket
terms in (60a), can be written using constants o defined as

(
P; kanr/||kfrH T sgn Bk'\I/IJ(le T

0.

Op = (62a)

10

where

= i _
f,:Llf’_l""'Lklkfl ir

k|k,1—l’+1,...,Lk|k,1+l

(62b)

Using the shorthand p as in the second measurement update (45),
construct i , Q(' 0, p,and p constants as in (40b), (41b), (41_ct)n,
and (44), respectively, in order to write the coefficients in the
integral in (61) as

Gi<|k71(V —H To’) =

a . +1 L +1
Liklwg+d Kiqrd T
G;“(_luj o —0), N B sgn —0),
=1 =1
1 ki _-l+l i

Gt ™2 son (0 — 0),

=1 0
1 K| _-L+1
l\ [¢H) a
psgn(M —0)
=D 0
: kR +1 0
= Gyjk-1 O psgn( —o)0. (63)
Then, the entire integral can be written compactly as
o 0 r
oo L'y oe
=T O
i psgn(n O
li = Gik—1 [ g 0
—oco =1
O O
i e—1+1 .
xexp — "KM p | —ol+je
0 ko do. (64)
=1
The solution to this integral, given in [12,13], is
O ) O
L+l L +1
I = | kll\.]. exp 0 ki . i 0
et P L — Hm| + jOcpmD
% o /=Lr:| e o
i O k)_! 0
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X 0 i |_4<Ik—1+l
2160 +pm+ T ) p osga( — Hm)
0 =1
. =m od
[ 0_ LK _ oU
ﬁkﬂ U . P osgn( — pm)- o
B . (65a)
/=IT'I
B Lik| 1+l
6= pm + 5’1 p sgn( ~ Hm) %
/=m

where
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g
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2 =
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o aenrt! Ly

+HoEp L+ psgn(M M o)
i

p=1 k—r
_ 1 . (65b)
104, —y+S_ (%, 1 — m)
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and forr € {1,...,L!
k|k—1
i ™
Sk—r(£ fm, 0 —pm) (
=+p™ gMm
i k—r|k—r

H' +

L 1Xx—r

A (B . - v,

=1 i Q"—rlk—rI_I B
sgn

« -

Pm T

+ B'l\:lfirlkfrH +

T
kik—1H - sgn (- — pm)

/=m =

Li "o (
k—rlka BMi ( " M T M; T
B i k—rlkHT sgn _Bklli—lABklk—l 'Bklk—lH

/=m

X sgn (HAV). (65c)

B. Measurement Update - Recovering the CF Structure

The old terms will be discussed later. For the new terms, i.e.,
m=1,..., L|k,1, the numerators of the measurement updated
coefficients (65b) can be reduced to a form compatible with Result
3. The four parameter bracket terms in (65b) can be rewritten as (56)
from the second measurement update. Manipulate the bracket term
outside the product in (65b) in the same manner as (54) and (55).
Then, the entire numerator form (65b) can be collapsed, using Results
1 and 2, into the form given in (56). Finally, the new four-parameter
polynomial coefficient involving two fundamental directions (HA and
a row of Byjk-1) can be computed as in the second measurement

update using Result 3. Those parameters will be combined with other
terms with the same exponential arguments, the set of new parameters

will be appended to the bottom of G(k|k — 1) to form a new. array
denoted G(k|k). Denote the number of the new terms in ¢  as
Klk

NP 0
kik SO that Nijk = Nijk—1 + Ny

Since one of the two fundamental directions for every new term
will be HA, it is appended to Byjx-; to obtain

Bk =

11

O O
Miklk = 1)
%M%rk+1) 2 +1i

oMm!
« 42 2k+1U
k

[mim

Mk =

: ; (67)
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Wherenrk = NkflAkfl —Nkn,”k,l, noting that Nijk—; = Nk—1 k-1
and Nkﬁq‘l = NWHk_l' The left column of this new block has three
|

parts. The firstN"_ | _ -~ elements are the left elements of all the
new rows of the prg\/lbhs Measurement update, i.e. thenew N"

—_ | —_
k 1k 1
rows of M(k — 1|k — 1). The next element corresponds to the new
fundamental direction from the previous measurement update, i.e.
the last row of By—jk-1. The remaining Nk-jjk-; rows are all the
same, and involve the new time propagation direction T,

The growth in the number of terms, which is given as a linear
dynamic system of integers, is based on the pattern for the recutsion
of M(k|k) given above. The number of terms in the sum in P e
given by Nk, is determined from the previous nunmber of terms

Nk-1jk-1 and the previous number of new terms Ny_;—; by the
following linear relationship:

r I r Ir I r
Nik = 21 Nt o 1 (68)
N N"
Kk L1 k-1 1
T

dened Sy TR R A RSP b e Rk R ke

u?dates. As in the first two measurement updates, the denominators
of the elements of the i row of Z(k|k) are equal. Therefore, it is

useful to denote the diagonal matrix D(k|k), where

0
D(k|k) = Diag L ! ,

Mr]k+l T
Bka H

T

N D g
ik " u I

1 1 1
HADHH® HE' " HE - (69)
Similarly, the denominators of the elements of the i row of P (k|k)
are also equal. Denote the diagonal matrix D (k |k), whose elements
equal the absolute values of the corresponding elements in D(k|k).

The new terms in P (k|k) and Z(L(lk are formed in the same
manner as in the first and second measurerment update, reducing sums
of B —pm terms to constants times HA and reducing the polynomial
coefficients to the four parameter structure in (23) using the Results
in Appendix A, producing the new rows for G(k|k). The recursion

for P (k|k) is

P (k|k)=

_ P K|k — 1)

D(k|k)>
v P2

(+1

g
BmI K PHT L qeto 48 BMdt+1, |
Kk

k—1lk—1
ml ml
rk+2) uT det® + 8 (rk+2)
AT

v P2
B : B

(rk+2) klk—1

K|k

ml

(rk+NkKk 1)
B Bk ! AT

ml :

) s Uk+NRIK=1D [T - det
— — +

PrkNi i | 1= K1k

Ly yldet ®| + 8 HA®TAT

1



Bujk-1 Ehte1 1 m
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HA

The array M (k| k) is constructed by appending N:lk new rows to
M|k — 1). The recursion is given by

=1

(70)



Similarly, the recursion for Z(k|k) is

Z(klk) =
Zklk = 1) E
O O
D[D(k|k)><
.z 0 Ua
20z 0 i
g
L2k -7’ (,5|\/|<1"<+3>HT - det @ [0
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oo - o ~0
Dozl =z 0 BMTRNEDRT . era o (7D
OH MANLD km1k-t
e Bo
D 0z(k) —z(k — 1) - det @ i
Ty )2 o ila
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oo . 0n
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gg )2 M(Ng 1k 17 N
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(k) a :1Z(Nk—1|k—1) ki —17 A

Since all the new rows in M (k|k) have width two, Lk is measure-

H n
ment updated by appending Nk\k elements of the integer 2 to Lijk—;
as LT f T 1’1‘

klk = I—klk—l y 2, ey 2 (72)

Thisproducesallofthe parametersnecessary toexpresstheucpdf’s
CF for the k™ measurement update as

Nk
- A ()
cPka(V) i1 klk
0
O
C\ \" \
Xexp — Kkp BMiy 1 j Gy gm0 (73)
i Tk|k kK
=1 =1
O
where coefficients are given by
Gyik(v) = i+ bisgn (BKA‘? V' sgn (BMI?V
I
. 1 . \ 2
JCisgn Bmk' V. +jdisgn B’L’:"( v
K2y
NELAIES 1
r=1 2m j9i<—r +y+ S‘i(ir(Bk“(V)
— 1
i — K , (74a)
k—r k—r |
where ;
. L’\'T(lk—r ( M T (
Skt (Bkixv) = Pi By_tjk—/H  sgn BZIQV ;
=1
(74b)
o 1 M T 2 M7 T
vr =2k =N = Z B H T ZiBenge . (740
and k—r is the time-step, where the term inyolving S'. . was created.
Hence, the age of the 1" term after the k™ update “s—L'ka — 5 and

new terms have age zero.

C. Time Propagation
The general time propagation uses the same formula as in the first

time propagation,
B Ity

Dt kW) = G @) e (75)

12

_ NIk
Cri kW) = G 11k (V)
i=1 0
0o \ \
e C ]
xep TN Ny YzeM N (76)
o= i Dk - killk U
where - -
= @—]
Ph+1g= Pk P, Zk+1§ =2k,
] U
2(kﬁ+ 1)
Mk + 1 |k) = Mk 1() 2(k + D
0 1 '
20k + 1)
- r |
il Bk @y
Licerie = L g~ Bk+llk = T ,
0,0
(17)

n n
and both Ni.jjk = Nkjk and Ny, jjx = Ny« because no new terms
are created during the time propagation.

D. Evaluating the Conditional Mean and Estimation Error Variance

It is shown in [12,13] that @y (V) is twice continuously differen-
tiable. The mean can be found from the unnormalized characteristic
function [1] by taking its partial derivative and then taking the limit
as v goes to the origin.

- C - N\t
) = ExK)1Zd = ¢ | 9pax (V) . (783)
" @y
Zk k v—0
where (Z) = ®
V) v (78b)
k|k v
fz  «

The second moment can be found by taking the same limit of the
second partial deriyati\}e of the characteistic function, as
E X(K)xK) -1 2°p V)

|Zc = Xl Zi . (78¢c
fz, (2 owt (789
and the error variance is given by I
Bk = E x(&xk)" Z KX (78d)
. —

The limits above must be taken along valid directions, due to the
structure of @ (V) in (76). Since this structure is a special case of
the structure in [12, 13], the details of these operations can be found
there.

VIII.

In order to arrest the growth in computational complexity, we
approximate the full information CF with one using a fixed slid-
ing window of the most recent measurements, where number of
measurements in this horizon is denoted Nz. Hence, the first Nz
measurement updates in the estimation are performed normally. Then,
for every measurement update k > Nz, we initialize a new finite
horizon éFH)_ estimator and perform Nz measurement updates over

FINITE HORIZON APPROXIMATION

the fixed window {zk — Nz + 1),...,z(K)}. This new initial
condition for the FH estimator is of the form

3 w1 w2

¢

wijo(V) =exp ~ @ Bwipv —a V%WH()V |



+jX

r
1 Vi
cos ¢ sith ¢
X2
V2,

The characteristic function of the ucpdf for the once propagated

Bwin= _g ) (79)
conditional density can be written as sing  cos



where Bw o is a rotation matrix. Denote the windowed first mea-
surement update mean and variance by V(1) and 8 (1). The
o 1 2 1 2

Bt
i ik |

OF ¢ ngot [k Ngn and of the updated FH first update qo\’jvm.
This process involves solving five nonlinear equations with the five
unknowns stated above, which is carried out using standard numerical
tools. It is necessary to make use of the decomposition in (5a) in order
to apply the proposed algorithm to the initial condition in (79).
This local first measurement updated CF, then, has the same mean
and variance as the original CF we are approximating. The remaining
Nz — 1 measurement updates are performed over the measurements
in the window, ultimately producing the Nz-measurement updated

CF « 5\,,\,2“\,2. This CF is taken as the approximation of ¢ , i.e,,
o kk. Hence, for k — Nz + 1 < Nz the FH initial

- , which is conditionedkén the
WNz|Nz =~ @ |

condition in (79) approximates g_a K
entire measurerment history. TheH, fork — Nz +1 > Nz, the FH

initial condition approximates the mean and variance of ¢ 7NZI“ ,
W Nz [Nz
produced by a previous iteration of this process.

Numerical comparisons have shown that the local initial condition
found in this way performs well in reproducing the full information
mean and variance. Moreover, simulations have shown that the
finite horizon mean and variances agree very closely with the full
information case even with horizon lengths as small as 8, as shown
in the next section.

IX. NUMERICAL EXAMPLES

We present a set of four examples demonstrating the performance

of our proposed two-state estimator. The main challenge in imple-
menting this estimator is the growth, with each measurement, of the
number of terms needed to express the cpdf’s CF. The proposed two-
state estimator is more efficient and produces far fewer terms than
the general-state estimator presented in [12, 13]. The improvement in
performance is quantified in the table below, comparing the number
of terms in the sum for a two-state implementation of [12, 13] to the
number produced by the proposed algorithm, given by (68).

Measurement Update k | 8 10 12
Ny« of Previous [12,13] | 75036 1389207 25719609
Nk« of Proposed | 3193 21891 150049
Percent Retained | 4.3% 1.6% 0.58%

However, the proposed estimator algorithm still suffers from the same
fundamental issue of growing complexity. This motivated the use of a
fixed window of the most recent measurements discussed in Section
VIII, the performance of which is discussed next.

A. Finite Horizon Accuracy

Figure 1 shows, on a logarithmic scale, differences between the
elements of the estimated state and error variance between the
finite-horizon and full-information estimators, normalized to the full-

information values; denote this normalized difference of a given
element as e(-). The system parameters used are 8 = 0.5, y = 0.1,

a = a; = 0.8, eig(@) = 0.8+ 0.55, H = [1 1], and
I = [0.5 1]". We compare the performance of horizon lengths
of Nz = 8 (dashed lines) and Nz = 10 (solid lines). The subscripts
indicate which element of the state estimate vector and error variance
matrix are being compared. These results show that this finite horizon
approximation is very accurate, with errors approximately between
0.01% and 0.0001% for our example and these two horizon lengths.
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Fig. 1: Comparison of two finite horizon estimators (dashed is 8, solid
is 10) to the full information estimator’s means and error variances.

B. Cauchy-Gaussian Comparison

In our examples we compare the performance of our Cauchy
estimator to the Kalman filter. To do this, we need to be able to
choose Gaussian parameters for the Kalman filter that approximate
the Cauchy parameters. To construct a normal or Gaussian pdf that
best fits a given Cauchy pdf, the following optimization problem is
solved I

o* = arg min ree fi(x) - f,:(I ) 2dx, (80)

o/m

(o}
where the Cauchy pdf is ;‘(Co(ox) = , >0 and the normal pdf

—x2/(202)
is given by f&¥ (x) = Lz—# o > 0. Solving (80) analytically
leads to a complex nonlinear equation relating o* to 8. Solving the
latter numerically yields 0™ = ko8, kp = 1.38980.

X4+

C. Simulations

The simulations in Fi?s 2, 3, and 4 all use the same dynamics,
where the eigenvalues of the transition matrix are eig(®) = 0.8
0.555, H=1[1 1], and T = [0.5 1]%. The initial condition has a
zero median and a; = a, = 0.8. All simulations use a measurement
horizon length of Nz = 10. In Fig. 2, y = 0.5 and 8 = 0.1 so that
the measurement noise dominates the process noise; in Fig. 3 the
parameters are interchanged so that the process noise dominates the
measurement noise. Gaussian parameters used for the LEG and for
Gaussian noises are closest, in the L, sense, to their corresponding
Cauchy distributions. For clarity of presentation in the figures, the
first update occurs at k = 0 instead of k = 1.

Figures 2 and 3 compare the Cauchy and Kalman filters’ responses
to Cauchy distributed noises, and Fig. 4 compares their response
to Gaussian distributed noises. Figures 2b and 3b show the same
data as Figs. 2a and 3a when zoomed in around zero to demonstrate
more clearly how the controllers respond when noise impulses are
encountered.

When facing Cauchy distributed noises the proposed estimator
outperforms the Kalman filter, especially when y > B as in Fig.
2. In this case, the Kalman filter’s estimation error is almost always
larger than that of the Cauchy estimator. Moreover, the impulsive
noise values cause the conditional variance computed by the Kalman
filter to be orders of magnitude smaller than the exact conditional
variance computed by the Cauchy estimator.

In Fig. 3, where 8 > y, both the Cauchy estimator’s and the
Kalman filter’s estimation errors appear to have similar performance.
However, the exact values of the conditional error variance computed
by the Cauchy estimator are quite different from the error variance
computed by the Kalman filter. In contrast to Fig. 2, in the case



where 3 > y the Kalman filter’s estimation error decays faster due
to the larger Kalman filter gain, since the process noise parameter
dominates the measurement noise. This faster decay leads to the

similar performance exhibited by both estimators.
During periods in the simulation without large impulses, the
Cauchy and Kalman filters have similar performance, as shown in

Figs. 2b and 3b. This suggests that in a non-impulsive noise setting,

the two estimators would have similar performance. In a Gaussian
noise setting, shown in Fig. 4, the Cauchy filter performs very well. It
approximates the variance of the optimal Kalman filter and tracks its
mean very closely. This demonstrates the robustness of the Cauchy

estimator in a Gaussian noise environment.

X. CONCLUSIONS

An efficient two-state Cauchy estimation algorithm able to operate
over an indefinite number of measurement updates is derived and

presented. Although the estimator here is a special case of the general
Cauchy estimation framework in [12,13], the structures presented in

this work take advantage of relationships currently understood only
for the two-state system, allowing the development of an efficient

recursive estimation structure. A method for using a finite window of
measurement is proposed, and example simulations are presented to

demonstrate the performance and robustness of the Cauchy estimator
over a large number of measurement updates.

APPENDIX

Result 1: The product of two terms given by

{a +Jd - sgn (HAV)}
xr

_J.e;*;FF_DLSgH_QHA\é__ i —va+Ddeandiman
J T (SHRAN
= a(’)“ + jdn; - sgn (HAV)

(81a)

where the i subscript denotes the input term and the o subscript
denotes the output term,

r, | r_ 4 r I
am 1 a — m
° = . - _d.a'm , (81b)
do 2r-e d a di
and
a= -2y DZ—\/2—92 ,
d = 46yD, (81c)
e= D2—y2—622+4(0OD)
Result 2: The product of two terms given by
{a" +b" - sgn (HAV) +jc" +jd" - sgn (HAV)}
1 ll' 1 1
1
jO +y + pm + D - sgn(HAV)
1
JG =y +pm+ D sgn(HAV)
=a" +b™ - sgn (HAV) + JC + Jd - sgn (HAv), (82a)
o o

where the i subscript denotes the input term and the o subscript

denotes the output term,
0o s f 0 o Ab-f-d 0.0
B _ — a D —C — M
BN R g 4 kg o B
- . b ci"]'
0g, me 0 0
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and
a=-2y p. +D* —y2-6", b = —4ypmD
C = 46ypom, , d= 49VD,
— 2
e= pr2n+D2—V2 +4(me) 5 (82¢)
- +4(pm6) +4(6D)",
f=4(omD)- p;, + D’ —y* +86°pmD,
A=m- e —f2 .
Result 3: The term given by
EHam +b™ - sgn (HAV) + jc™ + jd™ - sgn (HAV)
i i ( i i
J i A M!'I
jO+Ppm—y - sgn Bk|l: v + D - sgn(HAV)

a™—hM—sgn (HAV)
[

B jcla+ jdfn—'sgn (HAV)
1 1

m

j@—pm—y-sgn B L\fk' V. + D - sgn(HAV) -
=a" +b" - sgn \BM'mv sgn (HAV)
o o
m e + jd™ - sgn (HAV) (83a)
Kk v
+jCo "sgn B T o

where the i subscript denotes the input term and the o subscript
denotes the outputterm,
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nem _ g8
dm 0 —f e -d —-c b 5,
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d0 -y o0 0 O OpmO
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0 2] D —Pm am
1
and 3= — . — h= —
a szDz Pry 92 b_ 2yD,
c= —20y, d = 26D, (83¢)
e=2+b*+3+d’, f=2 ab+ad,
A=m- &—f2 .
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A stochastic control scheme is developed for scalar, discrete-time, and linear-dynamic systems driven
by Cauchy distributed process and measurement noises. When addressing the optimal control problem
for such systems, the standard quadratic cost criteria cannot be used. In this study we introduce a new
objective function that is functionally similar to the Cauchy probability density function. The performance
index, defined as the expectation of this objective function with respect to the Cauchy densities, exists.
The dynamic programming solution to the fixed and finite horizon optimal control problem that uses
this performance index appears to be intractable. Therefore, a moving horizon optimal model predictive
control problem is implemented, for which the conditional expected value of the objective function and
its gradients can be computed in closed form and without assumptions such as certainty equivalence.
Numerical results are shown for this m-step model predictive optimal controller and compared to a
similar, Linear-Exponential-Gaussian model predictive controller. An essential difference between the
Cauchy and Gaussian controllers when applied to a system with Cauchy noises is that, while the Gaussian
controller is linear and reacts strongly to all noise pulses, the Cauchy controller can differentiate between
measurement and process noise pulses by ignoring the former while responding to the latter. This
property of the Cauchy controller occurs when an impulsive measurement noise is more likely than an
impulsive process noise. The Cauchy and Gaussian controllers react similarly when applied to a system
with Gaussian noises, demonstrating the robustness of the proposed control scheme.
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atmospheric and underwater acoustic noises. Noises of this type
exhibit very impulsive behaviors that are not captured by a Gaus-

1. Introduction

Modern stochastic optimal control algorithms, such as the
Linear-Quadratic-Gaussian (LQG) and Linear-Exponential-Gaus-

sian (LEG) algorithms, assume that the éystem is driven by addi-
tive Gaussian process and measurement noises (Speyer & Chung,
2008, Chapters 9 and 10). Since the Gaussian probability density

functidh (pdf) is a light-tailed pdf, which essentially rules out the
possibility of large deviations, these algorithms are unable to han-
dle measurement outliers that produce large filter residuals due to
impulsive changes in the measurements. For example, the govern-
ing types of noises that occur in radar and sonar applications are

* This work was partially supported by Air Force Office of Scientific Research,
Award No. FA9550-10-1-0570, and by the United States—Israel Binational Science
Foundation, Grant 2008040. The material in this paper was partially presented at
the IEEE Conference on Decision and Control (CDC), December 15-17,2010, Atlanta,
Georgia, USA. This paper was recommended for publication in revised form by
Associate Editor Gang Tao under the direction of Editor Miroslav Krstic.

E-mail addresses: speyer@seas.ucla.edu (J.L. Speyer),
moshe.idan@technion.ac.il (M. Idan), jhf@seas.ucla.edu (J.H. Fernandez).

1 Tel.: +1 310 206 4451; fax: +1 310 206 2302.
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sian distribution (Kuruoglu, Fitzgerald, & Rayner, 1998). Dynamic
impulsive noises can be used in modeling unknown adversarial
motion, as well as formodeling air turbulence, which was shown to
be better represented by non-Gaussian, heavy-tailed distributions
(Reeves, 1969). The literature on how to handle outliers is dom-
inated by heuristic methods that assume a Gaussian distribution
for the underlying stochastic processes. Moreover, these methods
typically work for a posteriori analysis of static problems, which
is inadequate for control (Fernholz, Morgenthaler, & Tukey, 2004;
Hampel, Ronchetti, Rousseeuw, & Stahel, 1968; Holland & Welsch,
1977; Pirinen, 2008).

In this paper, the proposed controller is based on a discrete
time linear dynamic system with Cauchy distributed process and
measurement noises and initial condition. The Cauchy probabil-
ity distribution function (pdf) is in the class of probability distri-
butions called symmetricalpha-stable (Sa-S) distributions, whose
members are described using their characteristic functions (see
Samorodnitsky & Taqqu, 1994 for a comprehensive treatment of
Sd-S densities). Within this class: the Gaussian pdf corresponds to
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an infinite variance;? and the Cauchy pdf lacks a defined mean or
first moment. However, for Cauchy uncertainties the conditional
mean of the state and its conditional variance given a measure-
ment history do exist (Idan & Speyer, 2008, 2010). An important
aspect as well is that the conditional error variance is a function of
the measurement history (Idan & Speyer, 2008, 2010), quite unlike
the Gaussian case where the conditional error variance is a priori
known.

One of the fundamental lessons learned from the results pre-
sented in this paper is that the handling of measurement outliers
directly involves the stochastic controller. A stochastic control law
has to be consistent with the underlying structure of the condi-
tional pdf of the state variable and with the assumptions used in
its construction. Under the Gaussian assumption, only the state es-
timate depends on the measurement while the error variance of
the estimate does not. Since optimal controllers based on Gaus-
sian noises (e.g. LQG and LEG controllers) are linear in the mea-
surements, they do not differentiate between outliers and normal
measurements and respond to both of them in the same manner.

Since stochastic optimal control algorithms are developed

based on the minimization or maximization of an expectation of an
objective function, an appropriate computable objective function
hastobe determinedforsystemswith Cauchynoises. The objective
functions normally used in the LQG and the positive LEG (by
which we mean that the quadratic argument of the exponential
is positive) control settings are not suitable here because those
expectations are either undefined or infinite for Cauchy pdfs.3
Hence, a different objective function has to be chosen for thils\ case.
We chose an objective function that is a product of functions that
resemble scaled Cauchy pdf’s in structure and depend on the state
or control variable. For C’éuchy uncertainty, the expectation of this
objective function is finite and its conditional expectation given the
measurement history can be expressed as a closed form function
of the measurements and controls. A similar performance index
formulation was made for the LEG problem, where the objective
function was constructed as a product of exponential functions
ofthe state and the control (Jacobson, 1973) resembling Gaussian
pdf'sinform.
a Based on the proposed objective function, a dynamic program-
ming recursion rule is developed to construct the optimal con-
trol function. However, the application of this recursion rule to
the finite fixed horizon optimal control problem for systems with
Cauchy distributed noises appears to be intractable. Therefore, we
instead develop an m-step model predictive optimal controller
(Morari & Zafiriou, 1989), i.e., open-loop-optimal feedback con-
troller,* for such systems. Some initial results on scalar Cauchy
model predictive control, the Cauchy controller, were presented
in Idan, Emadzadeh, and Speyer (2010) and Speyer, Idan, and
Fernandez (2010). The current work presents a more complete
scalar Cauchy m-step optimal model predictive solution. Although
formulating an m-step optimal predictive controller produces a
suboptimal solution, the performance index is evaluated by de-
termining the conditional expected value of the objective function
giventhe measurement history exactly in closed form. This Cauchy
controller is expressed as a nonlinear function of the measurement
history.

Z Thein-phase componentofradar cluttertime series agrees extremely well with

a Sa-S pdf with @ = 1.7 (Tsakalides & Nikias, 1998). A

The scalar state problem addressed in this work provides in-
sightinto the problem of handling outliers, whichisresolved by the
Cauchystochasticcontrollerexplicitly, and notin thefilteralone, as
has been traditionally done for Gaussian noises. There is no equiv-
alent construction of such a Cauchy controller in the non-Gaussian
stochastic control literature, including in the stochastic model pre-
dictive control (MPC) setting. In stochastic MPC, the objective is
to minimize a quadratic objective function subject to probabilis-
ticinequality constraints. In Jun and Bitmead (2005) the assump-
tion of a linear system with additive Gaussian noise is essential in
transforming the stochastic optimal control problem into a deter-
ministic one.® In Cannon, Cheng, and Rakovic (2012) the Gaussian
assumption is removed by assuming that all stochastic uncer-
tainties have bounded support. Our motivation is to determine a
stochastic controller based on Cauchy pdf’s with infinite support,
which produces a deterministic analyti/(\: performance indexin the
control and measurement history.

The Cauchy controller gives insight into robustness by intro-
ducing heavy tailed distributions into the design. Moreover, a con-
troller design process is advocated for handling outliers based on
whether the measurement noise dominates the process noise. If
measurement noise dominates, the measurement outliers do not
have to be known, since the controller responds little to them.

The paper is organized as follows. The optimal control prob-
lem is formulated in Section 2. A new objective function is intro-
duced in Section 3 having the functional form of the Cauchy pdf.
The performance index to be optimized is the conditional expecta-
tion of the objective function. A dynamic programming recursion
rule is derived in Section 4. Since the solution to the dynamic pro-
gramming problem appears intractable, the Cauchy m-step model
predictive optimal controller is formulated and developed in Sec-
tion 5. The conditional expected value of the objective function is
determined in closed form. However, due to its complexity, the
maximizationoftheconditionalperformanceindexwithrespectto
the projected control sequence is determined numerically, as de-
tailed at the end of Section 5. Numerical examples are presented
in Section 6. First, aone-step process with a single measurementis
first explored to gain insight into the structure and behavior of the
Cauchy controllerinthe presence ofimpulsive heavy-tailed noises
discussed in Section 6.1. Then, multi-step examples are given in
éection 6.2 comparing the performance ofthe Cauchy and Gaussian
m-step model predictive optimal controllers under both Cauchy
and Gaussian noises. Finally, concluding remarks are presentedin
Section 7.

2. Problem statement

Considerthelinear, discrete-time, scalar stochastic system

xXp = OXp—1 + W1 + Wi—1, zr = Hx¢ + v, (1)

wherex;isthe state, uris the controlsignal, z;is the measurement,
and k is the time index. The signals wy and v, are independent
process and measurement noise sequences, respectively, that are
assumed to be independent of each other and Cauchy distributed
with pdf’s

A

B/n y/n

—_— = — 2
o) = o MW =G @

In this paper, we will compare our Cauchy controller to the negative LEG A
controller.

Open-loop-optimal feedback was introduced in the stochastic control context 5 Moreover, the solution in Jun and Bitmead (2005) is exact only for the scalar
by Dreyfus in Dreyfus (1965) case.
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These pdf's have a median of zero and scale parameters B > 0and
Hismidlitegppectively. The initial state is assumed to be also Cauchy

a/n
(3)
fro (XO) =

with a median at x o and scale parameters @ = 0.
Define the measurement history as

Zi ={z0, ..., %}, (4)

and assume that uy € Fy, where Fy is the class of functions adapted
to the O-algebra O; generated by Z;. The notion of adaptation
is that the random variable, here the control, is measurable with
respect to events in O.

In this work we consider a regulation problem, where the state
is to be driven to zero while penalizing the control effort. This prob-
lem will be cast as an optimal control problem, the performance
index of which will be introduced next.

' x0)? + @?

3. Performance index for a Cauchy controller

In posing an optimal control problem for the model in (1),
commonly used objective functions like the quadratic or the
exponentialofaquadraticcannotbe usedbecausethe expectations
required to evaluate those objective functions are infinite when
the systemnoiseinputshave heavy-tailed Cauchy pdf's. Therefore,
one has to introduce a new, computable objective?unction. In this
work we suggest an objective function that resembles in its form
the Cauchy pdf, and which also allows an analytical derivation
of the controller. This general objective function is reminiscent
to the choice of the objective function for the LEG (Speyer &
Chung, 2008, Chapter 10), which was constructed as a product
of functions resembling the Gaussian pdf. The original motivation
for the LEG objective function (Jacobson, 1973) was to consider
these exponential functions as membership functions in fuzzy set
theory, where the objective function was constructed as a product
of these Gaussian-shaped membership functions. Similarly, a

objective function constructed from products of Cauchy-shaped
membership functions is proposed here for systems with Cauchy

noises. This similarity allows us to compare the optimal controllers
forlinear systems with analogous performance index and different
types of noise.

Consequently, the membership functionsthatpenalize the state
and control are chosen as rational functions resembling Cauchy

pdf's and are expressed as
A

2 2
M) = Lz, M) = %, (5)

k + 1, w, + G

where 1 and {; are design parameters which affect the shape of
these functions. Note thatas 1]y — o or §; — oo, the penalties
on the state or the control are removed. In addition, smaller
values of 1y and i induce heavier weighings on the respective
variables. These particular functions are chosen because they make
the expectation with respect to the conditional pdf generated
by Cauchy noise of the resulting performance index analytic in
the control and measurement history as will be shown in the
sequel.

Ideally, for regulation, we would like to solve an infinite horizon
regulation problem. This is often done by solving a fixed horizon
problem from k = 0 to N, e.g., using the dynamic programming
approach, and then letting N go to infinity. However, we define a
more general objective function that will serve both the dynamic
programming formulation and the model predictive objective

function, discussed later, as

(s

w n ”7D
110 Yg = M (xi+1)M, (u;)
i=’lD
2
— | M 7Zi2 7D (6)
i X1 TNy w4+ G

with £ << n. The state and control histories used in the objective
function are defined as

Xpi={xt, . .., %}, (7a)

ug ={ug, ..., ut. (7b)
Since the performance indexis composed of the expected value of
bell-shaped curves in (6), we maximize to obtain regulation of the
state with penalties on the control. The performance index, which
is the expectation of the objective functionin (6), is given by

]l*,n = maxE L[Jq( Uy~ - ®)

rl 1 £+ ’
where element u; in U"", the control sequence, is u;y € Fi. The
expectationis taken over all the underlying random variables, i. e.,

allthe measurementand process noises, and the initial conditions.

4. Dynamic programming approach

To solve the problem in (8), we first consider the dynamic
programming approach with the hope of constructing an analytic
form of the controller. It requires the derivation of the general
optimal return function and the backwards recursion rule, which
are derived next. This derivation shows the complexity of
evaluating the backwards recursion rule for Cauchy noise patterns
and motivates the derivation of an alternative model-predictive-
type controller.

In this derivation, we consider a given fixed horizon problem
by setting £ and n of (8) tobe £ = 0 and n = N. Expanding the

expectatlon & tE%(rlght -hanl$ide of (8) results in
QN = max E
]

Uo
max E E L/JE&N,UN*1 Z D]
1 0

ud !
I D 000y Il
=maxE E ... p Loy XU, E%ZN[EZN1 Dzo
0 D
oo o,
=E maxE max EEL/J)(“
up €Fp uy—1EFN-_1
wi o, 0o O
o | Zy [Zy-1 | Zo
O
0,0 0 O« E&\v
= max max E Y ‘1,
—_co WEF) —oo0 uy-1€FN—1 —
0 0
yN-—1 |ZN DfZN\UN*1 (ZN| ZN,1)dZN
0
furloo (211 Zo) dz1 foy (z0)dz0, 9)

where element uy in LI”O_1 isu; € F, and fszH (2 |Zx_1)isthe

probability density function conditioned on the Ok 1 generated by
the measurement histories up to k — 1. The Fundamental Lemma
(Speyer & Chung, 2008, Chapter 9) was used to interchange the
maximization and expectation operations in the third equality

of (9).

http://dx.doi.org(10.1016/j.automatica.2013.11.005
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To apply dynamic programming to the problem in (9), we need
to recast the performance index as a recursion rule for an optimal
return function. To get this recursion, first note that the optimal
performance index starting at time step k + 1, which is embedded
in (9), i

N N 1[:D
maxE @ X Ex 1
0

uN-1
D max - ED(/JELCV,

k+1
uy—1€FN_1  _ 1
W 1€F1 oo o 0

= max

o_a
u(z)\/ ! |ZN fz nlon- (ZN |ZN71)d2N

fasalos (zir2 | Zist) dzira. (10)
Using the above, the performance index (9) can be restated as
i
O Oo l O
,P}N:D“’ max maxDoo max E (IJEL<Nf
’ N 1
Eoo uoﬁ:O —o00 wEFk  _oo et
- f G 112)
0 1 zetloe [P ] 0
faurloo (211Z0) fa (20) zis1 -+ +dzy dzo- (11)

mlq%mqﬁhg?&g&gamic programming solution, define the opti-

0 d M. O
K+H1,N (Zk+1) t.maxE X1 , Uy Zi+1
}-* N N-1]
X foprrlop (1 |Zk) © faloo (21 |20)on (20), (12)

which is the integrand of the most inner integral in (11). Then, the
sought after dynamic programming recursion rule becomes

0w

o (Zi) = maFX ]_,tH,N (Zi+1) dzn. (13)

uyeFyk
This is the general form for the recursion rule from which the op-
timal performance index is determined by

0 -

}* *

oN = ]O,N (Zo) dzp. (14)
A method for obtaining the conditional pdf's needed to evaluate
the expectationsin (12) is presentedin ldan and Speyer (2010) and
reviewed in Appendix A. It can be verified that the functional de-
pendence of these conditional pdf's on the measurements is very
complex, making the integration and maximization required in
(13) intractable.® The main difficulty arises from the need to av-
erage over future measurements.

Alternatively, a model predictive controller that does not av-
erage over future measurements and can therefore be constructed
more feasibly. Although sub-optimal, it will produce a practical and
computable control solution for a system with Cauchy noises. This
paper considers an m-step horizon optimal model predictive con-
troller, which is developed in the next section.

6 Note that for a Gaussian system with a multiplicative objective function

constructed from the product of exponentials with quadratic arguments, (13)
produces a linear controller — the LEG controller (Speyer & Chung, 2008, Chapter
10). However, if the objective function is constructed from a sum of exponentials
with quadratic arguments, the solution to (13) appears intractable.

5. Cauchy optimal model predictive controller

The Cauchy m-step optimal model predictive controller is
determined by maximizing a moving, fixed-horizon performance
index that is a function of all the measurements up to the current
time but no future ones. The performance index is defined as the
expected value of the objective function in (6) using £ = k (i.e.,
the current time) and n = k + m t.. p, where m is the size of a
moving horizon. The expectation is carried out over the stochastic
variables associated with the states in this moving horizon, i.e.,
the future process noise, and the currentmeasurementhistory. As

opposed to dynamic pro Fg_r1amm|ng, here we define the predictive
control sequence as U where every element initis in F ;

ie.w € Fka=k,...

"k
,p — 1. Hence, the performance index

is given as
=1
Ty = maxE @ Xp 4, U, , (19)
Uk

where E[:] is the expectatlon tak n o .75 is
of undeoy:sh
gp%c anfie the tnﬁé%gﬁ%rmance |nde(x?]k » 0:n eg f%e o

k+1
rt A QU g 1
U‘;:1 of (15) always exists and is finite.

The optimal performance index of (15) is restated as

T* oo o

o=MxEE g X Ul 0z
U] 00 0
=F[ maxE @ U‘n—1m% - Tf-ED]* D, (16)
XRyq? Tk Z Zk

p-1
Uk

where the Fundamental Lemma (Speyer & Chung, 2008, Chapter
9) is used to interchange the maximization and expectation
operations. The current control u; is found as a function of

the current information pattern that includes both current and
past measurements and the past control inputs. An important

characteristic of the objective function @ (-, -) is that for the Cauchy
densities the conditional performance index Jz, of (16) can be
determined in a closed form and the optimal control signal can be

determined by maximizing this expression.

Up until now we have considered that the control u, is adapted
to the O-algebra O; generated by the measurement history, Zy.
However, if the state is decomposed into a dynamic system that
contains all the underlying random variables and another dynamic
system only driven by the control, then the determination of the
optimal control is not only simplified, but indeed tractable. Given
this decomposition, we show that the control has to be adaptive
to only the O-algebra generated by the measurement history of
the decomposed state associated with the underlying random
variables.

Consider the linear, discrete-time, scalar stochastic system of
(1) withthe measurementhistory givenby (4). Letu, be adaptive to
the filtration O -algebra Oy generated by the measurement history
Zy. Filtration implies that the collection of O -algebras O; have the
property that if j < k, then 0; S Oi (Fleming & Rishel, 1975).
Therefore, filtration is the evolution of the O-algebra generated
by measurement history through time. Adaptation means that
the control is a measurable function of events on this O -algebra,
i.e., this ensures that the control sequence is causal. Now consider

the decomposition x; = X ; + X x where
z = HX  + v, (17a)
Zr = Hxy. (17b)

X = OX (-1 + Wi—1,

Xp = Oxp—1 + w1,
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Here, X 1 and z ; are the state and the measurement of the subsystem

containing all the underlying random variables, i.e., wi, v, and the
initial condition x ¢, which is Cauchy distributed with zero median

similar to (3). Similarly, x and z ; are the state and measurement

of a dynamic system driven by u; with initial condition x o. The
initialization of either system is arbitrary and does not affect the

simplicity introduced by the decomposition, as long as the sum of
the initial value of (17b) and the median of x ¢ equals the given xg.

The measurement history can be decomposed as Z; = Zi+Zy
where
Zi={zo,...,24} Zi=1{z0, - 2} (18)

In the following itis shown that the control is measurable on events
generated by Z & only.

Theorem 1. Consider the filtration O -algebra O« generated by 7
with the decomposition Zy = Z y + Z. For Z € Grand O 1 C
O «, Z k is adapted to G -1 and uy is adapted to O .

Proof. Start with k = 0. The initial state is decomposed as
X0 = Xo + Xo, Where x¢ is a given non-random parameter. The
measurement decomposes as zo = zZ o + zo, where zp = Hxg is a
given non-random parameter and io = Z o € Go.Then, ug, whichis
determined by zo, is adapted to Oo. Atk =1, bothx1 = ®xo+ up
and z1 = Hx1 are adapted to 0o, and thus Z 1 is adapted to O.

For the measurement atk = 1,z 1 € 01,Z~ € g1,and 0y C 0.

Hence, since u is determined by Z1 = Z 1 + Z 4, it is adapted to
0 1. Recursively to any k, Ziis adapted to G - 1. With Z € Gy, and
G -1 C O, u that is determined by Z; = Zi+ Ziis adapted to
O+

Due to the result of Theorem 1, i.e., that the control is adapted

to Ok, the conditioning on Z; can be replaced by Z «. With these

substitutions, the optimization or maximization step of the model
predictive control problem is rﬁﬁtateﬁj as

i

]2, = m%xE v ){k+17 Uk @Zk

Ug
ma ED . @

= pjﬁ v xk+1’ Uk Z
Ug

. Lok

t. mﬁ>1(jz~k t"]ik' (19)
Uy

In the model predictive control operation mode, although the op-
timal control sequence is determined over the prediction inter-
val from k to p, only the current control input ux at time step k is
applied to the system. Then, at subsequent time steps, the perfor-
mance index in (16) is maximized again to compute a new optimal

control sequence, the first element of which is applied to the sys-
tem.

The conditional pdf needed to evaluate (19) can be determined
using the results in Idan and Speyer (2010). Next, we briefly
review those results and show how they are used to express Iz,
analytically.

5.1. Propagation of the conditional pdf

In Idan and Speyer (2010) it was shown that the conditional pdf
discussed above can be determined analytically in a closed form.
It was obtained by expressing the pdf as a sum of terms, each of
which is a rational function of the random variable. The number
of terms in this sum grows with time and the parameters of these
terms are updated during the time propagation and measurement
updated steps. The posteriori form of the conditional pdf given the
measurement history up to the current time is presented in (A.12)

5
of Appendix A and presented here for convenience as
2 -
7 0 (] a; (k1 K)E ¢ + b;(k|k)
faoe 12 = O 0 : (20)

i=1 e Aklk) “ ¥ w?(k|K)

where the conditional pdf is explicitly conditioned on the O-
algebra G ; generated by Z 1, the stochastic part (17a) of the de-
composed system in (17). The update and propagation of the
conditional density, expressed as the propagation equations for
a;(k|k), bi(k|k), Ai(k|k) and w;(k| k), as well as their boundary con-
ditions, are givenin AppendixA. Note thatthe measuremententers
the conditional pdf in a nonlinear way through the A,_, (klk) =
z /H term used in the measurement update stage. In addition, due
to the state decomposition of (17), the conditional pdf in (20) is

independent of the control variable.

5.2. Construction of performance index

The conditional pdf and its propagation relations reviewed in
Appendix A can be used to derive an analytical expression for

the conditional performance index ] in (19) as a function of the

p—1 Zy
control sequence Uk . First, is Lﬁed in (19) to yield
[
];k = maxE Yy Xk+1 ) U
“e o D I
= maxE M.(x M (u) £
Uk i=k
D o0 D 00 -
= max My (xi+1) M, (u;)
Z — —® =k D
0. .

Xﬁp---fh1\dk va'--vxk+1|zk‘ dfp,...,d£k+1. (21)
. a

Here, fz - iiatlGr X pyeveyd k1 7« | isthe conditional jointdensity,

determined from the one-step projected conditional pdf of (A.17)

and the state transition pgfs that are influenced by the process

noise, and is determined

0. . ;0O
f’ZV"'fkﬂ\dk xﬂ""ixk+1|zk| D
=Sl i O Tl oo X ktts Z il 0
XfxpMXpﬁ ”E(HD 71‘x7[2|,...,fk+1,zk|
v ~
Xkawlm 1 ;D| xthiz‘Dl”
fxp\xp 1 |Xp 1| fx,, 1"‘}' F
LT & IS
X fi gl 1 xk+2\xk+1| o Tretli o 22)

while from (2) and using the Markov property of (17a), the
transition probability is

g .0

fox xm\xz" = B/n (23)
T (X1 — Ox )% + B2
forj =k, ...,p — 1. Substituting (22) into (21) we obtain
M. WM 0. 0
]§k = max Mx(xp)Mu(up—1)ffp\fp—1 XP"‘P*‘
uller.  —o —o
0 0 0 0
Xdfy e My (R )M (s gl TartlZed @i - (24)

Due to the rational polynomial structure of both the associated
pdf’'s presented earlier and of the objective function (-, ) in (6),
e above integrals can be carried out analytically. However, for

presentation simplicity, we will derive a closed form result when

Please cite this article in press as: Speyer, |. L.,
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the state only at the prediction horizonp = k+m is weighted in the
objective function of (6). This is obtained by letting i+1 — 00,i =
ky...,p — 2, which yields My (xi+1) = 1,i = k,...,p — 2. Inthis
case the conditional performance index to maximize becomes

]* p—1 D ) D
ax  M(u) M%)z ploc 5,17 dF . (25)
UZ. | i=k —D":’ o

The cond|t|ortfl pdffi,i6, %,1Z«l is obtained by time-propagating
fi 6, §k|z"k\ of (20) m times using (A.17)—(A.21) to yield

g .« (L a@lof, +b(plk)
o, ©1Zd = 0. 02 .
o =1 x,—A(plk) + w?(plk)
The parameters a;(p|k), bi(plk), Ai(plk) and w;(p|k) are expressed
explicitly using (A.18)—(A.21). The integral in (25) is evaluated

analytically as

(26)

0
_ = 0. 0.
s(xy) = M%)fe o 35124l Tat,
0o k+2 ~
'7; L ai(v|k)xp +bl_(v|k) i,
= < )2 2 0.
¢ Txren i —A(p|k)DZ+a)2(p|k)
- p P poi=1 oy i i
_ Efu o0 r,2

, a(plk)% , + biplk dx
R T S

p = AGID T + @ Gl
AN + (b —ax )(n +w), (27)
i 14 i

P P i ip
w x, +A)2+ (N, + w)?

where in the last expression the functional dependence of the
parameters a;, b;, A; and @; on the time index (pIk) is removed for
brevity. Using this resultin (25) yields the following maximization

problem
O

i=1
= nn;‘l*__f‘ 1 ai():

i=1

£ T Mm%

2 2 3G 28)
U =+
p—1

The dependence of [ on the elements of U, is given explicitly
in the first term of (23’) and implicitly in the second term via x ,
which is obtained by propagating (17b) m times using the control
sequence Upk_1; hence, ;p is a function of an open loop control
policy from time k to time p — 1, and §,7 is the maximizing value.
Note that, as with the a priori conditional pdfin (20), the number
of terms that determine the performance index in (28) grows
with k.

The conditional performance index in (28) is an extremely
complex function of the m elements in U Consequently, there
is no analytical solution to the associatecf maximization problem.
Hence, a numerical procedure is proposed next to determine the
optimal control signal at each time step k. Since the numerics
use realizations where random variables take on specific values,

regular fonts are used hereon for the state and control.

5.3. Homotopy optimization for maximizing J7

To solve the maximization problem in (28) using the homotopy
method, we first address the problem when the contré variable
is removed from the performance index, attained by letting C] —
00,j = k, T A 1_. In this case, ]ik becomes a sum of rational
functions of x ,. Since x, is a scalar, a one dimensional search can
be used to determine the global optimum, E*,. Since there are
no control penalties, this global optimum is focused on keeping
the predicted state small for regulation. Moreover, due to the

sequence that yields this particular 9?*7 is not unique (clearly it is
uniqgue when m = 1.) One such sequence, which assumes that

uj,j =k, ...,p — 1is constant, is given by
a?p* — O"x,
uj = m—1 ’ j:ki"'1p_1' (29)
O
z=o®

NS BS MakP P RS RIS L 0! penplties bagkinfo
are set to very high values, thus imposing a small change in the
value of the performance index. Starting with an initial guess for
uj,j = k,...,p— 1asin (29), the maximization Of]z”k is carried
out numerically using the accelerated gradient method (Fletcher
& Powell, 1963; Myers, 1968) as a refinement step. The process is
repeated for decreasing CiS until reaching their design values.

The gradient needed for the accelerated gradient method in
the refinement step in the homotopy optimization method_can
be computed analytically by applying the chain rule to (28). The

partial of the performance index]z~k withrespecttouy isgiven by
ad [J

dJ7, p=1 22 2
- % JL

O
o) . y 0

W e e
-
0
095(xy) [ 2% [o(x
£ I8y lg(xy) (30)

o dx, uzl + 1? '
forf =k,...,p— 1, where g(x,) is given in (27) and its gradient
is

z IJS_JE|2D‘Z"|]J - D)\2 + : + va ZED

() = nn, g AT AT

Ox i=1 LAY (0, Q)
” T & A e 8
2 x,+ A sAin,+b n,,+wﬂ
- 2 2 ) (31)

+(ny + w)

Although an analytic form of the second derivative ofg(fp) can be
determined, itinvolves a sum of terms that increases the compu-

tation time. Thereby, we use an accelerated gradient method that
iteratively estimates the Hessian matrix of the performance in-
dex from an initial guess, and by performing a sequence of one-
dimensional searches. Each such search maximizes the function
along a specific search direction, determined by the gradient and
the current estimate of the Hessian. The search result is used to
update the estimate of the Hessian, which is then used to deter-
mine a new search direction orthogonal to the previous one. Fora
quadratic performance index this second order method converges
to the optimum in n steps, where n is the number of variables
being optimized over (Fletcher & Powell, 1963; Myers, 1968). Al-
thoughthe Cauchy performanceindexisnotquadratic,itisapprox-
imately quadratic locally around the maximum. Therefore, once a
point sufficiently near the maximum is found, the accelerated gra-

dientmethod willfind this maximum easiI)‘]. Tofindthis startpoint
forthe accelerated gradient method, the’homotopy optimization

a),-D(a? ,+A)

method uses a grid search to find the optimal E*pand then finds a

predictive control sequence to get from x to x *,, From that point, we

do a simple gradient search to get to the ciuadratio neighborhood
before usingthe accelerated gradient method to find the optimum.

45 deterministic state propagation in (17b), for m = 1 the control
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% To obtain insight into the properties of the Cauchy stochas- 01

. tic controller, the one-step, one-measurement example is first
6. Numerical examples 90
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Fig. 1. Contour plots of the performance index for the Cauchy one-step controller.

analyzed in Section 6.1. Then, multi-step numerical simulation
results are given in Section 6.2, which illustrate the Cauchy
controllers behavior in the presence of dominant Cauchy measure-

Foentangis2rnd ATy minant, Gael RS WP s ome et
standard scheme, here the model predictive linear-exponential-

Gaussian (LEG) controller. Although dynamic programming?1 pro-
vides a closed-form solution to the LEG problem (Speyer & Chung,

aifSefaRtERd QiR A PSR R A RIEH SIHBIEP R BistaiR 2rit

derivation of the LEG m-step controller, used here for comparison,

PAHSPNIMARBETEE Botitef) QiR SRmREs st S As eSS

two classes of f\)df’s, and thus the objective functions, is given in
Appendix B.1 and used in the subsequent examples.

6.1. One-step, one-measurement example

To explore the characteristics of the proposed Cauchy con-
troller, in this section we evaluate numerically its simplest form.
Specifically, we examine the value of the optimal control signal at

k = 0,ie., uf(Z0), as a function of the first measurement z o, that
varies due to the measurement noise Vq (Idan et al., 2010), while
considering aone step horizon, i.e., m = 1. The parameters for the
system and Cauchy signals are first chosenas ® = 1,H = 1,0 =
O.1,B = 0.02,y = 0.5, and xo = 0. This example represents the
case where the uncertainty in the initial condition is smaller than
the measurement noise, i.e., @ < Yy . To explore the effect of higher
uncertainty in the initial conditions, also the case for which @ = y
is considered by choosing the values @ = 0.5andy = 0.1.

Initially, no penalty is introduced on the control signal in (28),
i.e., o — oo, while the state at k = 1 is weighted with 4 =
0.7.Substituting the system parametersinto (28), the performance
index becomes

0.1148(4.1667z"fJ — 1.0163u0z o + 1)

]z“o = 1202-1—0.;6511402 +0.6724)

0.03416(7.58292] 20 + 3.4153uoz~o,_|— 1)

i g (32)
(G2 +0.16) (uo+70)?+1.22

+

The optimal controller can be obtained by maximizing (32) with
respect to U The necessary optimality condition, 8]*~/8u0 _ 0,
Zyo

reduces to finding the roots of the fifth-order polynomial

5M5 4 3 2

o T laug + laug + loug + liug + lo = 0, (33)
where
I =1, | =357, | =(52315;°2
5 4. 0 3 + 3.6681
I, = (3.6806z 2 0 ° )

o +6.6305)z , (34)

I = (0.94917 & & 3.21247 ¢ + 2.9623),
lo = (0.07782z 0

o +0.3992)7 .

This fifth order polynomial always has atleast one real root. If three
roots are real, then there are two local maximum values and the
larger of the two gives the optimal control. A similar expression,
with different numerical values, can be attained also fofthe @ > Yy
case.

Contour plots of the performance index for the two case
discussed above are shown in Fig. 1, with expanded views given
in Fig. 2. In both cases it is observed that the performance index
has two ridges, with one, marked by the dashed line, being
dominant. This indicates that the solution of (33) had two maxima,
with the higher one being the global maximum. These contours
demonstrate a clear difference in the optimal control action for the
two cases examined. Forthefirstcase of @ < Yy, showninFigs. 1(a)
and 2(a), the optimal control action u* i a nonlinear function of Zo

andisalmostaligned withthe up ~ Oline. Inthe centerisanellipse

shaped_contour whose major axis is oriented between the two
ridges. This demonstrates thatwhen the measurementuncertainty

is dominant, the optimal control action is minimal. The optimal
control strategy changes drastically for the @ = y case depicted
in Figs. 1(b) and 2(b). In this case, the global optimum generates

an appl_’oxi_matelkl linear relation between u* a#d Z o, indicating
that a significant control action is adopted wheri the measurement

uncertainty is decreased.
This difference in behavior cannot be deduced by examining
only the conditional variance and conditional mean of the

estimation error at k = 0, which are given in Idan and Speyer

http://dx.doi.org(10.1016/j.automatica.2013.11.005
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Fig. 2. Zoomed in contour plots of the performance index for the Cauchy one-step controller.
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Fig. 4. Cauchy (solid line) and Gaussian (dashed line) one-step controller with parameters variations in 3 and 1.

(2008) as

ED( A)2|~D a - & —1-1D 35
X0 —X0)|zo0 =
0 0 0 V (aA$AV77 ’ ( )

where ¥ ¢ = @y zo/(a@ + y). This conditional variance represents
the uncertainty in the state estimation and grows with 520 Eq.
(35) shows that the values of the conditional variance and the
conditional mean do not change when interchanging the values
of ¥ and d. Hence, the change in the control strategy is correctly
deduced by the optimal Cauchy control scheme. Specifically, it
correctly reduces the control effort when @ << YV, i.e., when a
measurement noise impulse is more likely than a large impulse in
the initial condition. Alternatively, a nearly linear control action is
produced when @ > YV, i.e., the controller effectively forces the
state back toward the origin when the measurement uncertainty
is relatively small.

To obtain further insight, the performance of the Cauchy con-
troller is compared to the LEG controller, presented in Appendix B.
First, in Fig. 3(a), the optimal Cauchy and LEG control signals are
plotted versus the measurement z o for the @ < y case with dif-
ferent values of Y. In this case, for the LEG controller, the optimal
control is given by u*o = —x'pand therefore, itis linearin z . Fig. 3(a)
shows that the Cauchy controller is symmetric about zo = 0.
Furthermore, the Cauchy controller approaches zero when |z 0| be-
comes large, while the Gaussian controller remains linear with
respect to the measurement z o. This is a significant difference in be-
havior between the Cauchy and Gaussian optimal controllers that
can be deduced analytically from (33). If u™(z¢) is finite, the dom-
inant term in (33) as |zo] — o0 is l1u* (o), or limzg|—co u*(Z0)
— 0.

Fig. 3(b) examines the case where Y << @ for different values
of d. In this case also the Cauchy controller is nearly linear.
Interestingly, the slope of the Cauchy controller, which is hardly
effected by the change @, is nearly identical to that of the LEG
controller.

The effect of parametric changesin 3 and N forthe y = @ case
is explored in Fig. 4. In this case, the LEG controller is a single line,
sincefor(o = 00, i.e.,withno controlweighting, the LEG controller
is independent of the parameters B and 1 (see Appendix B).
Exploring this parametric changeinthe y << G reveals plots similar
to Fig. 3(b), not shown here for brevity.

Now we consider the cases with control weighting. Reducing
¢, from oo to 5 has a negligible effect on both the Cauchy and the
LEG controllers. Further reduction in {y, i.e., increase in the control
weighting, affects the control strategies as depicted in Fig. 5. The
nonlinear behavior of the Cauchy controller is retained for the
y =a ca%e depicted in Fig. 5(a), while an approximately linear
Cauchy controller is shown in Fig. 5(b) forthe y < @.

For Yy = @, in the region where z o is relatively small, the
Cauchy controlleris approximately linear (see Fig. 5(a)). However,
the Cauchy controller in Fig. 5(a) for large z ¢ goes toward zero.
This is in sharp contrast with the LEG controller, which remains
linear in the measurement. Therefore, the problem of handling
outliers, which occur for the Cauchy pdf, appears to be resolved
by the Cauchy controller explicitly, and not in the filtering or
estimation stage as has been done traditionally. Note that the
controller design process explicitly uses the parameters y and
d and hence their relative size Yy > @, i.e., it anticipates more
impulsive measurement uncertainty than process uncertainty. If
Y << @, the Cauchy controller behaves approximately like the LEG

http://dx.doi.org{10.1016/j.automatica.2013.11.005

Please cite this article in press as: Speyer, |. L., etal. A stochastic controller for a scalar linear system with additive Cauchy noise. Automatica (2013),

29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58



© ® N o ua

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
a4
42
43
44
45
46
47
48
49
50
51

AUT: 5757

J.L. Speyer et al. | Automatica xx (XXxXX) XXX—XXX 9
SE X {j=X
A x (= ShE: ="
0.05 Y 4 o {=3 20 e a =4
‘M . *® (=2 N * = 'r,’
e ) c =1 o =2
2 o T 0
= o ?
—-0.05 - —20 isgs—
%o s
-10 -5 0 5 10 -30 -20 -10 0 10 20 30

Z0

(@a=0.1, 8=0.02, y =0.5, N1 =0.7.

20

(b)ya =0.5, B =0.02, y =0.1, N1 =0.7.

Fig. 5. Cauchy (solid line) and Gaussian (dashed line) one-step controller with parameters variations in {o for y > @ leftand y < @ right.

linear controller in Fig. 5(b), i.e., it expects more impulsive process
uncertainty than measurement uncertainty. For both the Cauchy

and Gaussian changes in {p make only small changes in the gain.

6.2. Multi-step numerical examples

The dynamic characteristics of the Cauchy optimal controller,
obtained by maximizing the performance index in (28), are
explored through several multi-step numerical examples. The
Cauchy optimal control results are compared against the least-
squares equivalent LEG controller, obtained from (B.12) and the
Kalman filter from (B.10). The two examples that are discussed in
this section are a stable system with a horizon length of m = 2 and
an unstable system with a horizon length of m = 5. The param-
eter values of 8 and y are interchanged to see how the controller
performance changes whenitis designed for alarge measurement
noise impulse in contrast to when it is designed for a large process
noise impulse. All simulations in this section use either noise pa-
rameters 8 = 0.1,y = 0.02or8 = 0.02,y = 0.1 and initial
condition: @ = 0.5 and xo = 0. They also all use the same system
parameter of H = 1, and either @ = 0.95 or @ = 1.05. Substi-
tuting these parameters into (28), the performance index is max-
imized numerically with respect to the control at each time using
the homotopy optimization method.

The performance of the Cauchy and LEG model predictive
controllers are compared for m = 2 and using 1], = 0.7 as the
parameter for the penalty on the state at x;+2 and §; = 8,i =
k, k + 1 as the parameter for the control penalty. First, fory = 0.1
and B = 0.02, when the noises are small, the Cauchy and the
LEG controllers exhibit similar performance. However, they behave
rather differently when a large measurement pulse occurs. A
significant measurement noise pulse causes a large measurement.
A measurement noise pulse does not represent a state deviation
and thus, for proper regulation, the controller should ignore that
measurement. The Cauchy predictive controller, designed for y >
B, is able to make this distinction, whereas the LEG predictive
controller reacts linearly to all the pulses and does not differentiate
as shown in Fig. 6(a), at around time step k = 51. The Cauchy
controller ignores this large measurement deviation, applying
almost zero control, whereas the LEG controller applies a very large
control input that causes the state to deviate away from zero. An
additional control effort is then required to correct this deviation.
In this way the Cauchy controller manages to avoid unnecessary
actuation and thus maintains the system performance.

Performance differences are also observed when encountering
a large process noise signal. In Fig. 6(a), at time steps k = 1 and
k = 13 process noise pulses occur, and although both controllers
react to them and are able to overcome this deviation, the Cauchy
controller does so much quicker than the LEG by applying a much
larger control effort. The Cauchy controller applies a larger control
because its gain for small measurement values are higher than that
ofthe LEG.

When the Cauchy predictive controller is designed for B >

Y, the behavior of both the Cauchy and LEG controllers perform
A

similarly as shown in Fig. 6(b), demonstrating the same linear
behavior seen in Figs. 3(b) and 5(b). One effect of having 8 > y
is that the state trajectories for the Cauchy and LEG controllers
appear equal in Figs. 6(b) and 7(b). Even though the controllers
process the measurements differently, due to the dominance of the
process noise the controls and state appear similar.

Using the same noise sequence, similarresults are obtained for

an unstable system with m = 5, while using 1), = 0.7 as the
parameter for the penalty on the state at xx+5 and C, = 8,i =
k, ...,k + 4 as the parameter for the control penalty. These re-

sults are depicted in Fig. 7. For the ¥ > f3 shown in Fig. 7(a),
the measurement noise impulses are more probable than process
noise impulses. Hence, when a large measurement impulse occurs
at k = 51, the Cauchy controller ignores it, applying almost zero
control, whereas the LEG controller applies a very large control in-
put thaf causes the state to deviate away from zero. Forthe y < f8
case shown in Fig. 7(b), both the Cauchy and the LEG controllers
regulate in a similar fashion.

Finally, the Cauchy controller is examined in simulation with
Gaussian noises, for which the LEG design is optimal. The design
parameters used for the Cauchy controller were obtained by using

the least-square fit relations between the Cauchy and Gaussian
pdf’s presented in Appendix B. Both a stable system with m = 2

And an unstable system with m = 5 presented earlier were used
in these simulations. The results are presented in Fig. 8, showing
also the numerical values used in the Cauchy controller design.

The response of the Cauchy controller is very similar to that of the
optimal (in this case) LEG controller for both cases. This clearly
demonstrates the robustness of the Cauchy controller, which
performs nearly optimally even in the Gaussian noise simulation

for which it was not designed.

7. Conclusions

A new control design paradigm is proposed for optimal con-

trol problems for scalar linear dynamic system driven by Cauchy
distributed signals. The scalar dynamic programming solution is
intractable. Since the model predictive controller is known to
have similar, though suboptimal, performance, an m-step optimal
model predictive controller was derived. The conditional expecta-
tion of the new objective function with respect to the exact Cauchy
conditional pdf was determined in closed form. The Cauchy con-
troller results were compared against an equivalent LEG m-step
optimal modeIApredictive controller. We showed that both con-
trollers behave in a similar way when faced with non-impulsive
Gaussian noises that generate small measurement noise. However,
a dramatic difference was observed between the two controllers
whenfaced with Cauchy measurementnoise sequences with large
pulses. The Cauchy optimal controller ignores measurement noise
pulses and reacts strongly to process noise pulses, effectively dif-
ferentiating between process and measurement noise and thereby

producing a scheme for handling measurement outliers. This
A
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Fig. 6. 2-step Cauchy and Gaussian controllers with 3 and y parameters interchanged for stable system in Cauchy simulation.
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Fig. 7. 5-step Cauchy and Gaussian controllers with 3 and y parameters interchanged for unstable system in Cauchy simulation.
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Fig. 8. Cauchy and Gaussian controllers for stable and unstable systems in a Gaussian simulation.

ability of the Cauchy controller to reject outliers depends cru-
cially onthe dominance ofthe measurementnoise overthe process
noise. In contrast, the LEG controller is linearly proportional to the
measurements and always reacts to large measurement outliers.

The conditional performance index is a sum that grows at each
measurement update. However, as justified in Idan and Speyer

(2010), the number of terms in the conditional pdf can be truncated
with minimal effect on the performance; in fact, the truncation of
old terms enhances numerical performance for unstable systems.
This result is important for the feasibility of the Cauchy model
predictive controller because it leads to a computationally efficient
implementation. Finally, generalization of this scheme is being
resolvedbyfirstextendingtheestimatortothemultivariablecase,
where the characteristic function of the conditional pdf must be
propagated (Idan & Speyer, 2013). Then, Parseval’s Theorem is used
to express the conditional performance index as an integral over
the spectral variables involving the characteristic function of the
conditional pdf (Fernandez, Speyer, & Idan, 2013). This formulation
also allows a pathway for the generalization of the scalar stochastic
controller developed here to the multivariable case.

Appendix A. Algorithm for the propagation of the conditional
pdf

This appendix briefly summarizes the Cauchy estimator derived
previously in Idan and Speyer (2010). This estimator is central in
deriving the Cauchy controller discussed in this study.

The conditional pdf of X  given past data Z ;1 (i.e., before the z
measurement is processed) is shown in Idan and Speyer (2010) to
be expressed in a factored form given by

0z

ffk\ﬁkq ko k

0 O aelie= 17, + bl = 1)
-1 = i 0, . (A1)
=t X —Alklk—1) + o, (klk—1)

At the initial k = 0 there is only one term in the above sum, with
the initial parameters a1(0| — 1) = 0,5:(0| — 1) = a/r1, A (0] —
1) = 0,and W1(0] — 1) = @. After an additional measurement z x
isobtained, a measurementupdated conditional pdfis determined
by
.. 0

= fipiil6is é‘k'”‘z kTF‘ . (A.2)

fixloir 2L k*1|
The densﬁty function irﬁ the above numeratoDr is cﬁomputed ﬁs

fx o \NA‘Zk
"k ‘

fi i 64 Jgk.fk‘ik—1‘ = firl6r- fk|Z~k—1| v Z~k—ka|
BT k=0T + bk - 1)
0. &
im1 5 —AlKlk=1)" + @i (klk—1)
y/n

XO—— 7 - (”3)
Z~k - ka + Y2

A simple assumption made in Idan and Speyer (2010) guarantees

that the complex conjugate roots in (A.3) of the denominator

polynomial in x x are distinct. Therefore, using partial fraction

expansions, (A.3) can be written as
i k+2

f il D O

XpgklGe—1 K ko k=1

e(kl)E +b (klk)
0 i kD i . (A.4)
e O ¥ (2] WA (1))
This step introduces an additional term in the pdf sum with four
parameters. A;(k|k) = Ai(k|k — 1), wi(k|k) = wi(klk —1),i =
1, ..., k+1represent the unchanged roots of the pdf denominator,
while Ax+2(klk) = z/H and Wi2(klk) =_y/|H| represent its
new complex measurement dependent roots. a ;(k|k) and b ;(k|k)
ane corrmuted frorrErle partialtpction expansions as

a; (klk) ai(klk—1)

_ = Fi(k) (A.5)
b i(klk) bi(k|k—1)
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fori=1,...,k+ 1, where Next we consider the time propagation from step k to k +
1 1. Given the codeitionaI pdf in (A.12), our goal is to construct
F(K) = — fiie1l6r 1 k1 |i kﬁ , given by the Chapman-Kolmogorov equation
Ae (k1) 1 : Fawler FeerlZ]
0 ' _ i ' 3 eg(k) Xk |0k 1 k+1 Lk D
% 0i(k) w.(klK) Bi(k) w; (k[x) 0 (A.6) 0 o f DI x f DY . 0
[Az ) 0 k+1 k  X¢l0k 'k (i g, (A15)
N CREXAGE , - T .
i ) i ( )e(k) 5,(k) N AJk k) 6,‘()()7 . X gt Xk ["
@i (klk) @i (1K) where
2 2 2
0i(k) = (Aws2(klK) — Ai(k1K)) ™ + w, (k1K) — @, (k|k) (A.73) ; D~ ; ‘D - B/m (A.16)
XeetlX e Xpprlx k| = L, .
8.06) = 20/(K1) (ACKIR) = Avsa(K10) (A7) T T - 0f P g
A (k) Eé ® + 9_2()()']' (AT0) Using (A.12) and (A.16), the integral in (A.15) can be computed for
N (1) ' l each term in the sum analytically, leading to
Note that the matrices F;(k), i = 1, ...,k + 1 are not functions of

the numerator parameters a;(k|k — 1) and b;(k|k — 1), generating
a linear, time-dependent, stochastic update equation (A.5). The

numerator parameters of the new term in the pdf sum are

_ (g
ar2(klk) = aipr2(klk) (A.8)
i=1
_ K _
bir2(klK) = bixe2(klK), (A.9)
i=1
wherefori =1, ...,k +
L O e
ICD I O W (A.10a)
b g2 (kIK) oo b i(klk)
and
O 1 OD
Fue2(®) = 2 (AKIK) = Aw2(kI0) 1 (A-10b)

Next, f7 |6, 5k\z~k_1| is determined by integrating the pdf in
(A.4) with respect to x r. Due to the modular structure of this pdf,
the integral is evaluated analytically as

D~ . _ . —
c1 = k+2 ‘
K

fixloier k k=1[0 O, ok
i=1 i
Finally, the conditional pdf in (A.2) is obtained by dividing the
resultin (A.4) by the one in (A.11), yielding

(A11)

D k+2 -
fi o, Wzl = = 1 b € 2 .
=1 % — Aklk) 4w, (kk)
The terms a;(k|k) and b;(k|k) are obtained by dividing a ; (k|k) and
l;,v(k|k) by the resultin (A.11),i.e.,fori=1---,k+2

(A12)

a:(k|k)
ai(klk) = g 0 (A13)
fik\ﬁH_ Z~k|z k—1|
bi(klk) = ‘ﬁ ) 0. (A14)

a6 Z~k|z~ k=1

(A.12) indicates that the pdf structure defined in (A.1) is main-
tained in factored form after a measurement update with one ad-
ditional termin the pdf sum. 0

It should be pointed out that fi 5, +1Z:l of (A.12) could
be used to compute the state estimate and its estimation error
covariance. This/{'esult is not shown here, because it is not used
in deriving the Cauchy controller. The interested reader is referred
to Idan and Speyer (2010) for details.

PR
frrloe T2 k]

F —ate= T m = o=t

, (A7)
— o MG+ 1|k)D 2+ w2 (k+ 10K
wherefori =1,...,k+2
A (k+ 1K) = @A (k[K) (A.18)
o (k 1|k) lcbl’w (k|k) B (A.19)
gl taiot O
.a,-(k-l- 1|k)Er a; (k[k)
bi(k + 1K) — Gi(k) b (k) (A.20)
with
O
sign(®) 0
G() = AKIB  wik+ 1. (A.21)
@i (k[k) @i (k[k)

This shows that the factored pdf structure of (A.1) is regained in
(A.17) after a measurement update and a time propagation step.

Appendix B. Gaussian model predictive controller

To compare the performance of the Cauchy controller with one
assuming Gaussian noises, one has to consider: (a) the parameters

of the Gaussian pdf’s that best approximate the Cauchy pdf’s, and
(b)the objective/}unction used to design the Gaussian cotroller to
be comparable to the one used in the Cauchy noise setting. Those
two items are addressed first in this appendix, which concludes

with the solution to the Gaussian controller problem.

B.1. Normal pdfleast squares fit of a Cauchy pdf

To construct a normal or Gaussian pdf that best fits a given
Cauchy pdf, tihe following optimization problem is solved

D C N 2
&* = argomin fx () —fx () dx, (B.1)

where the Cauchy pdfis

c g/

NORIITE ©2

and the normal pdf is given by
—2/(282)

A () = iv% §>o0. (B.3)
r

37
38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57
58

59

60

61
62

63

64

65

66

67

68

70

71



Please cite this article in press as: Speyer, |. L., etal. A stochastic controller for a scalar linear system with additive Cauchy noise. Automatica (2013),
http://dx.doi.org{10.1016/j.automatica.2013.11.005




10

11

12

13

14
15

16
17
18
19
20

21

22

23

24

25
26

27

28

29
30

31
32

33

34

35

36
37

38

39

AUT: 5757

J.L. Speyer et al. | Automatica xx (xxxx) XxXX—XXX 13

Solving the integral in (B.1) analytically and equating its derivative
with respeDct to & to zero yields trﬁnonjnear equation

a ox 4CE ) 0

d ® 1/ 1

I A
d # - 2 -

X 1+K lj1— ﬁﬁgmﬁuzﬁ A v‘(D

© 2 ¢ o 3\7% e
20 2 2
— o, (B.4)

where K = (i/&. This equation clearly indicates that the optimal &
is proportional to |1, i.e., &* = Ko, where Kj is the solution of (B.4).

The latter can be solved only numerically to yield Ko =~ 1.3898.
Consequently, the equivalent corresponding pdf's for the

Gaussian optimal control problem are chosen as A

o~ (0—%0)?/(2Mo)

fro(t0) = —~——, M, = K20?

21 Mo
oW/ 2W)
fWk(Wk) = AL, W = Kgﬁz
2Nw

-v3/(2v) 2 2
V =Ky -

(B.5a)

(B.5b)

frV) = Voo s (B:5¢)

B.2. Linear-exponential-Gaussian (LEG) m-step optimal model pre-
dictive controller

To best approximate the Cauchy objective function of (6) in
the Gaussian case, an exponential objective function is chosen.
Since only the dynamic programming solution to the LEG problem
available (Speyer & Chung, 2008, Chapter 10), the m-step optimal
model predictive LEG controller is derived here.

The LEG performance index is

1D p=1 d] 0
* E E - 2 O . r,‘ui2 Z
]c = jmax g2 WXt k
U,_ €F
kD 0 0 2 q,ik Vz“zd]]] ED
=E UiT?éFE e 2 M _DZ"
tE J* . (B.6)
Gz,

Similarly to fitting the pdf’s discussed above, the parameters in the
Gaussian objective function can be chosen to best fit the Cauchy
objective function as

1 1
gy = 1= i=k ...,p—1. (B.7)

] i —r>=!
K P KO(i2

To solve the maximization problem in (B.6), Z; could be decom-

posed asin Section 5. However in this decomposition does not sim-

plify the derivation as was the case when determining the Cauchy
controller, and hence is not performed here.

To maximize (B.6) it is sufﬂment to maximize ]c; , given by
3 U _1EI 5 +DP
]sz =E L2 % ; - sz
1 Elﬂ* 2 % 1 D D
=z = efzwpfxpm |z dx. (B.8)

The conditional density in (B.8) is the Gaussian conditional density
of the state at time p given all measurements and controls up to

time k and is given by

frploy Dpr|zk . =[]
— v

, (B.9)

where x , and M, are the state estimate and error variance at time

p of a Kalman filter, generated from the update equations (Speyer
& Chung, 2008, Chapter 9)

VM

Xk=Xk+PkH/V(Zk—HXk), Py = V+H2Mk’ (B.10a)
and propagated to time p from time k using

%1 _ Oxy LW M _ ?p; LW (B.10b)
Using (B.9) in (B.8) and solving the integral gives

g
X =1 r
3 Mpap+1 i iuz
Ja = H—r . (B.11a)
k Mpg, +1
E}, =0"x,+ Qr—"1-i u; (B.11b)

i=k
The control input sequence that maximizes this objective function
is found analytically. The control input applied at time k is the first

elementﬁf the optimal control Sﬁquence u, found in (B.12), as
* -1 T m

u = — (QS S+R) S QP x4 (B.12)
where

qp
S =D®m‘1 N 1D, 0 (B.13)

:Mpqp-l-'l’

and R is a diagonal matrix with r;, i = 1, ., m along its diagonal.
For the inverse in (B.12) to exist, it is sufficient that g, = 0 and
that the matrix R be positive definite, which means thatr; > 0 V.
Note thatin the Gaussian case the multiplicative form of the objec-
tive function allows a very simple analytical form of the optimal
control. The same is true for the dynamic programming solution,
where the objective function composed of sums of exponentials

appears intractable.
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Abstract—An optimal predictive controller for linear, vector-
state dynamic systems driven by Cauchy measurement and
process noises is developed. For the vector-state system, the
probability distribution function (pdf) of the state conditioned
on the measurement history cannot be generated. However, the
characteristic function of this pdf can be expressed in an analytic
form. Consequently, the performance index is evaluated in the
spectral domain using this characteristic function. By using an
objective function that is a product of functions resembling
Cauchy pdfs, the conditional performance index is obtained
analytically in closed form by using Parseval’s equation and
integrating over the spectral vector. This forms a non-convex
function of the control signal, and must be optimized numerically
at each time step. A two-state example is used to expose the
interesting robustness characteristics of the proposed controller.

I. INTRODUCTION

Models in modern stochastic optimal control algorithms like
the linear quadratic Gaussian (LQG) and the linear exponential
Gaussian (LEG) assume linear dynamics and additive process
and measurement noises described by the Gaussian probability
density function (pdf). The Gaussian distribution function has
very light tails, so that large deviations are essentially impos-
sible. Therefore, the LQG and LEG algorithms do not perform
well in the presence of heavy-tailed or impulsive uncertainties.
In many practical applications, such as radar and sonar systems
affected by atmospheric and underwater acoustic noises, more
impulsive uncertainties are observed [1]. Impulsive behavior
is also more effective at modeling adversarial motion, as is
air turbulence, which is better described by distributions with
heavier tails than the Gaussian [2].

Therefore, in this paper we propose a system model that
assumes linear dynamics driven by additive process and mea-
surement noises described by Cauchy pdfs. Both the Cauchy
and Gaussian pdfs belong to a class of distributions called
the symmetric a-stable (Sa-S) class, whose members are
described by their characteristic functions. A full treatment
of the Sa-S class can be found in [3]. The Cauchy pdf is
in a subset of this class whose members have infinite second
moments. In addition, the mean of the Cauchy pdf is not well
defined.

Algorithms for optimal estimation and control of scalar
linear systems driven by Cauchy distributed process and
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measurement noises have been developed previously in [4, 5].
There, the conditional performance index for model predic-
tive control is determined directly by taking the conditional
expectation of the objective function using the probability
density given the measurement history as presented in [4]. A
dynamic programming algorithm is also developed in [5]. It is
shown that the solution to the dynamic programming recursion
is intractable because of the need to average over future
measurements in determining the optimal return function.

In this paper, the Cauchy optimal control algorithm for
scalar systems [5] is extended to systems with a vector state.
For the vector case, the conditional pdf (cpdf) given the mea-
surement history is not available. However the characteristic
function of the cpdf can be recursively propagated [6, 7]. The
significant contribution in this paper is evaluating, in closed
form, the conditional performance index using the cpdf’s
characteristic function instead of the cpdf itself, and integrating
over the spectral variables instead of the state variables.

Although the cpdf is not available as a function of the state
vector, the conditional expectation of the objective function,
i.e. the conditional performance index, can be computed using
the characteristic function of the cpdf, which is available as
a function of the spectral vector [7]. The objective function
is cast as a product of functions resembling Cauchy pdfs,
which are easily transformed into a function of the spectral
variables. Consequently, the conditional performance index is
found in a closed form. Due to its complexity, the optimal
control signal is determined by numerically optimizing this
conditional performance index in a model predictive control
setting.

The remainder of the paper is structured as follows. The
controlled system model is presented in Section Il. An ap-
propriate, computable performance index for this problem is
presented in Section 1l and subsequently transformed from
the state variable to the spectral variable form. In Section IV
the spectral integrations required to determine the conditional
performance index are reduced to an integral formula that can
be evaluated in closed form. Section V addresses a special
case of systems with two states. Here, using an alternative,
simplified form of the two state cpdf’s characteristic function,
the conditional performance is determined in closed form. In
Section VI numerical examples are given. Conclusions are
given in Section VII.
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Il. DESCRIPTION OF THE MODEL

This paper deals with a discrete time, linear system de-

scribed by
x(k + 1) = Ox(k) + Au(k) + 'w(k)

1

z(k) = Hx(k) + v(k) @)

where x(k) € R" is the state vector, u(k) is a scalar deter-

ministic input, z(k) is a scalar measurement, and w(k) and

v(k) are scalar independent Cauchy distributed process and

measurement noise inputs with medians at zero and scaling

parameters of B and y, respectively, so that their pdfs are

given by

fov, W(K) v/m

/1T
= Wiy v = edfipe @
The characteristic functions of these pdfs are
(ka(o') = e_ﬁ|0|, q)vk(g) = e—V|U|, (3)

where o is the scalar spectral variable.
The initial conditions are assumed to be independent
Cauchy distributed random variables with the pdfs

fx,(x(0))= Zx (05 —x.(0))? + 02 (43)
i=1
Its characteristic function is given by
n
(pr(V) — _ai|Vi|+j>?i(0)Vi ) (4b)

i=1
where v; is an element of v € R".

The stochastic system (1) can be decomposed into two
systems, one driven by u(k) and one by w(k), by exploiting
the linearity of the system. Let X (k) and z(k) be the part of the
system driven by the control u(k) only, and X(k) and Z(k) be
the part of the system driven by the process noise w(k) only
and contains all the underlying random variables. Then,

5
5b

x(k) = x(k) + X (k
200 2 503+ 20
The controlled part of the system is described by
X(k) = dx(k — 1) + Au(k — 1) (6a)
z(k) = Hx(k) (6b)
with initial condition x(0). The process noise driven part is
given by - _
X(k) = OX(k — 1) +Tw(k — 1) (7a)
Z(k) = HX (k) + v(Kk). (7b)

The process and measurements noise pdfs were defined in (2),
while the initial condition of this stochastic model is Cauchy
distributed with a pdf given by

n

fe, (X)) ="" 2 /M (8a)
iz1 i(0)+a;
Its characteristic function is
ID'I —ai|vil
oz, (V)= & (8b)

The above decomposition will be used to derive the Cauchy
controller.

Let the state, measurement, and control histories used in the
control problem formulation be defined as

~m :={x(R),...,x(m)}, (9a)
Ze:={2(0), ..., Z(}, (9b)
" ,UR eF (9¢)

where F is the class of piecewise continuous functions adapted
to the o-algebra ok generated by the measurement history, i.e.
the control is a random variable that is measurable with respect
to events in ok [8]. Moreover, in [9] it is shown that uk is
adapted to the o-algebra G« generated by Z which means
that the control is measurable on events generated by z, only.

I11. DERIVATION OF TI-'I:E CoST USING CHARACTERISTIC
UNCTIONS

Our proposed controller is an m-step model predictive
controller [10] that uses current and past measurements, and
averages over future process noise. At each time step, the
conditional performance index is computed. Since the perfor-
mance index will be shown to be a nonconvex function of
the control sequence, it is maximized numerically. Once the
optimal control sequence of length m is computed, only the
first control in that sequence is applied. At the next step, a new

measurement is taken and the process is repeated, producing a
new optimal control sequence and applying only the first one.
In this paper, we study the optimal stochastic state regulation
problem, noting that the tracking problem can be handled in
a similar fashion. Our regulation problem will have a finite
horizon of length m such that the terminal state occurs at
time-step p = k +m.

Similar to the scalar control problem presented in [5], the
control objective function is chosen as a product of Cauchy-
like functions given by

1] Xk+1 UP 1 \
’hl cmo M M1 /T
A x(i+1y+n2 . (10)
i=k iop=1 T i+1,r

Then, the the performance index conditioned on the current
measurement history and averaged over future process noises
is given by

‘]I:,pz max- g w Xk+1 N 1

ue-leF -
= max E E w XkJrl,Uk Zx
UPleF I
p p—1 7 *
=E max E ¢y X, U, EJ
UPleF k 2

where the interchange of the maximum and expectation oper-

ations is due to the fundamental theorem in [11]. )
We are now concerned with determining the analytic form

for the conditional performance index J~ . Using (10), i



becomes

J~- =E y XP p-1 ~
Zi I k+1'Uk Zx
oA Y S N
=E Q?_l'r/rr 2 2 g-’l/ 2 Z
i=k gr=1 I’(I + 1) + r]|+1,r u (l) + C| \
™ p—1 n nl+1 r/7T CI/7T
N nNn 2 "2 2
- %+ 1)+n,
. i=k r=1 r(' ) ’7|+1,r u (I) + C|

X fw X(P)IX(p — 1)) - - fw (X(k + 2)[X(k + 1))
x g 17 (®(K+1)|Z)dR1(k +1)...d%n(k + 1)
X dR1(K +2)...d%n(k +2)...d%1(p)...d%n(p)  (12)

For now, let us only consider weighting on the terminal state,
x(p), and on the m scalar control inputs. The control weighting

] n,_
functions MY P71 o

can come out of the integral.

SRRN tHE]ePROGHEi OVeb [ fis'ﬁﬁdﬁﬁe”ﬁﬂ@if}‘ﬁlj idNofy) obas

{X1(p), ..., Xn(p)}. Thus, for notational convenience we can
drop the time-step index in this integral and write it over
{X1,...,Xn} as , \
T
-~ =MmMY = m np,r
Zi o R + X 2+’75,r
Xfy(plZ(()T|Zk)d)71...d)7n. (13)

The cpdf f (x | Zk) can be evaluated in closed form for

scalar systemsf ]. However, for vector state systems it is the
characteristic function of the cpdf, P51 2 (v) that is evaluated

BertneRanferindeX ermd QFSed"’FEﬁBeCSHIQ%”H\t%‘?a@WWﬂ@

spectral variable v instead of the pdf variable X.

Define the product over r in the integral in (13) as Rx and
its Fourier transform as Ly,

m
Re(X +X) = Mi+14/T (142)
r=1 ’)Zr +§r +r7i2+1,r
Lx(v) = e 'lor [ el —JXr. (14b)

r=1

Using these definitions, we can apply Parseval’s equation over
each variable in (13) to express the conditional performance
index as an integral over the spectral variable v,

M e
J~-="" LE(v) - (v) dv ...dv
> Px z
K 2m) ol Tk 1 n
oo | \
v i e Mo [ve| + X (P)vr
= (277)“ —co r=1

x q’)”(pli(‘/) dvi...dvn, (15)
where L} is the complex conjugate of Lx. The next section

IV. THE CONDITIONAL PERFORMANCE INDEX
Consider the integral over vy in (15),

|
ro 1IN .
Npr Env| i X(p),v
— v)dv,
In= =€ | e @512
oo " fprl Eev |+ K)oV
= e = P15 (V)dvn - (16)
The c df for the st ate X (k ) is denoted-as ka_LZk The -unnor-
malized cpdf (u cp df) Is denoted as f fx f
wheref * is the pdf of the X |Zic
measurement hlstory and has
a kno Z«

alue. In [12,13], the characteristic function of

wn v

the ucpdf <p>z Iév) is recursively propagated; the charac-
k k

grjstic function of the normalized cpdf is @z 5 (v) =

x|z (V)T Z . where T2 = g |~ (v)|v=0. From [12,13]
the form of the characteristic functiozﬁ of the ucpdf at time k

H A k k
is shown to Q& - nt\ o)
K|k
XkIZk:_ g (Yei(v))e (17a)
where e T \
Yl m =" g s alt v e R (17b)
R=1
k/k 1
" klk N1
kilk(v):_ piFL ai'fq'k,v +j lqklk,v (17c)

R=1
and the parameters n| klk, qklk, pklk aklk, pIk are
e,i iR iR iR i
generated sequentially from k=0.

For the MPC algorithm, the characteristic function of the

HERE TSt 122 BreRdeaLeth ERMER: RS SRARGA dynamics to

o1z (V) is

o- ~ (=9~ - (@)W (G N)TV)
Xp | Zk Xk | Zk

- X ow (PN Tv)pw (V)
K/k
_ Q&nk|(ygi(®mTV))eyZi’k("’mTv)
i=1 (
m—1

xexp —B © v —.-gj@rv) -B|T,v)|

(18)

In (18) we add m terms to the sum in yklk(v) of (17c).
By combining the exponent in (16) with that in (18), the
combined exponent in the integrand of (16) has in total of
K|k M X

Ng; +m+n real terms, and the imaginary part is composed
of two components. Define the following terms

- klk klk _ Kl
PR = PR, ar = PMag forR=1,. n,
= _ klk — 4t R=1,..., k/k
Pir = B, a =T for t:R—(nZ:k"'l) (193)
N k/k
PirR = NpR, Sklk — R=1,...,Ngj
ar r for r=R—(nke/ik+m)

and
bKlk K|k K|k k|k



shows how to evaluate these n nested integrals sequentially in i =k|pi + X, Nei =i +M+n,, (19b)
closed form. gr =0 forR=n, +1,...,N



Using these definitions, the integrand in (16) becomes

k /K
w(v) =nxw) _ ™ k'Wk(v)) %k (20a)
h i=1 i=1
wi ere>7k|k A~ e 1 »
gi (V)= - Qir SO0 QR ,V (20b)
yklk B ﬁgf_lqk l_klk \ +'l_k|k \
i (V)= - Pir ar .V br Vv (20c)

The integration in (16) is performed for egch elemgnt of v

in turn. Beginning with v,, decompose v = ¥ 1 where
V ¢ R"L Then, Vn
k/k
re° ' re°
In= w(v)dv= > TR Wwilv)adv
i=1
—00 —00 —o00 —o00 D

¥ oromg [

e
e e = Lpi(Vn, \’/\)an[ d\? (21)

The objective is to reduce the inner integral in (21) to a form
that is obtained in closed form usmg the integral formula
developed in [12, 13]. First, since a multlplles v in the sign
function in (20b) and the absolute value fugction in (20c),

they are decomposed as 5_';“‘ = g« , Where a:'k
| |

R A s
|

a scalar and aka € R"L Therefore, the inner products in
(20b) and (ZOc) become

1 \ 1 \
akyv = alv - —agw (22)

In order to rewrite (2%)| in a form consistent with the integral
formula in [12,13], is d|V|deg out of the second term.

S
If 7% = 0, then the term e #e,v  loses dependence on v _

% Bskromayesh SR 1BRSAIRAIAL I (33)- BEherefore

iR
® 1 | | | |
=klk k |k k |k k |k
a ~tsgn
iRV = iR \g AR Hr —Vn (233)
where uklk af* ' . Therefore, the elements in (20D)
e
and (200) are ER
klk 1_klk klk Kk
RSO Gr LV =0r SON Wr T Vn (23b)
plk gkl 70 = pkIk kjk —va (23c)
iR iR iR iR
where aklk = qklksgn —a% and pkIk = pkIk 7k Using

these définitiorf3, the innefintegral & (21) 1§ of the form

~ i TRk RUS. lk—klk i
<k g e
wi(V)dvn=e T S
Dﬁkk D
x exp L pk klk — Vn +jbk|kvn[ dvn. (24)

iR iR i

The convolution integral in (24) is shown in [12, 13;“to have

a closed form solution composed as a sum with nj; terms,
each of which is structurally similar to the terms in wi(v).
That is, there will be a new g function which is a function of
signs of inner products of V.

Therefore, this integration process can be repeated until all
of the integrals are taken, and a closed form solution of the
conditional performance index is determined. This pattern will
be seen in the next section, where the conditional performance
index for the two state system is explicitly obtained.

V. THE CONDITIONAL PERFORMANCE INDEX FOR A
SECOND ORDER SYSTEM

Now, let us limit our discussion to a second order system in
order to use the structure for the cpdf’s characteristic function
presented in [7]. We use this alternate, two state structure for
the characteristic function of the cpdf in order to make the

subsequent derivations and computation more tractable. This
is due to a simpler structure for the exponential argument in

as well as a

(17c), which produces fewer terms in the SL“(T]
coefficients in

simpler, closed form representation for the g.
(17a).

The structure for the characteristic function for the ucpdf is
given by

Q- ~(v)= Gi(v) x
Xp 9k
i=1
O i
™ "R Ki\ U
expj_ P BMklv +J > Zk’iBI'(Vl VD, (25)
rR=1 Py R=1

which consists of a sum of Nk similar terms. Each of these

terms has a coefficient Gi(v) and an exponential whose argu-
ment involves a sum of absolute values equivalent to (17c). In
the exponentlal aéyzr;gent thereisa sum of L' absolute value

terms; the P h values represent real, 'scalar constants
R ,I
where P Mk,.
K,i
ki>0;the B sare 1l X2 row vectors, called the

fundamental directions; and the MR ; represent integers that
index the fundamental directions that multiply v.

All of these parameters correspond with those of the struc-
ture for the gpdf’s chayacteristic function presented in §ﬁ<ction
IV The Py; and Z,; parameters correspond to piz and

kik
bi respectlveb{< and the fundamental directions Bk are the
same as the a™'" vectors.

The coefficients Gi(v) equal the g"'"" from (17a), and are
rational polynomial of sums of sign fbnctions, given by

klk

G(v)=____ a +bisgn B',\(/"lv sgn B’,\(A‘ZV
(2m)" M v, |
+jcisgn Bk 'v +jdisgn Bk v
i, C
o | 1
R=1

Br+y+ Sk—R(Ble)

ie y+ ( , (26a)

v)
Ik—R - SIL—R B



where LiRes
i N
Sk-r(Bkv) =

PR BMHT sgn By, (26h)
r=1

B r=2r-ZBMH T _ ZEBMERH !
W) of gil*
gi i

the S}_; (Bkv) defined above.

 Next, the transformed objective function in the performance
index is given by

(26¢)

The arguments y , given in (17b), correspond to

Lt( )(V) =e p1 [vi| +jX1v1 — Np2 [va| +jX2v2 @
Where,p since k will be a constant through this process, the

time subscript of X(p) is replaced with element subscripts as

Xx(p) = [X1 Xz2]. The 2-state specific version of (15) then
becomes
My =
J> = L v, Vv2) - @~ ~(v1,v2)dviv
' e X(p)( ) (pxp|zk( 1,V2) dviva
rOO
MY exp(n v, n Vv +XV+iXxv)
= (2m? -1l - 2| 2l 11 22
—o0 0
Kk Li MR )
X Gi(v)exp - \PR,i B, v
i=1 F:l \ I
MR
+j ZR B i v dv. (28)
Ki k
R=1
The in_te%;ral with respect to v> is now taken. We use a second
subscrlg) to denote the individual elements of the rows of Bk
as B'\k/Ii = B',}Af BYs . This allows us to decompose the
complex part of the exponential argument as
| \
i z7 B
ki K v
R I
\ 2 \
=j ‘(z»fz,iBEﬁ"" Vil SZRBYE v, (29)
R=1 R=1
and rewrite J~ as
Zk \
I
3o = 1 pH 4:/77
z” @mr_ uiyee?
I 1 | . \ \
X EXp _r]llvll+j)?lvl+j ZR BMk,i

i=1 K,i k21

—00

R=1

0N\
X 1 Gi(v)-expi— i Bur v = |ve

R
+j Z,Fi’iBL/Izk’i V2 +iXav2  dvadv. (30)
R=1

Denote the inner integral with respect to v2 in (30) as Io:

rOO

I = Gi(v1, v2)
Li
X R R.i R.i
Xexp - Pyi Bk!\{l vi+ Bk,g/l 2 =2 |0+ vy
R=1
1 \ 1
R & R Mﬁ,i L
+j kB2  va+jXav2 dva. (31)
R=1

The integral I is over the v» variable, but it also contains v1
in the absolute value terms in the argument of the exponential.
In order to solve it, we need to use the integral of absolute
values method presented in [7], which requires writing the

integral in_the farm given in 0
l°° |+ T
2= G PBrsgN (MR —0)"
o R=1
0 \+1 _ 0
xexp— ' pr|ur — 0| +j&io- do, (32)

R=1
as was done in obtaining (24). That method involves defining
a set of scalar constants pr and f"(, as well as scalar variables
MR that depend on v1, and thus are constants in thig integration.
wdRaRig sesiMationyyyeiassume that all the B:’A‘Z /= 0. Then,

setthattransforms| into the
Li+1

R 1 2
integral of absolute values structure. This assumption does not
R

. . M
affect generality, because if one of the B, 5 does equal zero
for some i, then it would multiply the v» variable by 0 and
thus, that absolute value term would not be a function of v»

and would come out of I, and integrated later.
The set of variables, denoted {ugr}, is constructeddels
BM].?V]' + Bmfavz = _Bkl\zF:’Di _Bll(\{llivl - VZD

B“i
k.2
MR
=—B, 5 (IR — v2) (33a)
where - e
-B _
_He Red{l,...,Li}ie{l,... Nk}
“R_E B}
0 R=L+1.

(33b)
Similarly, for the arLgument of the exponential, we can con-
struct a set of {pr}1, 41 as

Cpi _pgMe Re{l,...,Li}ie{l. .., Nc 1}
PR = k k,2 k i
n2 R=L,+1 (330
and a scalar numberif‘n( as ~ i MiR @)
& =Xo+ . ZBy,.

The solution to an integral of an exponent of absolute values

requires dividing the domain of integration into regions in
which the integrand is continuous. Since Gi(v) is piecewise-

constant, its discontinuities lie on the boundaries of these



regions, and hence Gi(v) is treated as a constant in each
integral. In order for the Gi(v) coefficients to be consistent
with the form in (32), use the tilde, bar, and hat substitutions
similar to the measurement update process described in [7] in

order to write Gj in (31) as Gi:

_g}*l y S
Gi(va,v2) > 7 psgn(pn —0), psgn(n —o0),
G r & R R
R=1 R=1 0
\1 i ~ LN ~
N 25 son (g - 0),. .., ¢ Dpsan (i - 0)”
R=1 R=1
L1 D
: 5 — o)
LG PrSON (LR —0)- . (34)
R=1

The sums in the rational polynomial Gi(v) contain different o
constants but the same set of sgn (Ur — @). Hence, it is written
as G for shorthand.

Then, let 0 = v2 in order to write the one-dimensional
integral in (32). The solution is given as a sum of L} + 1
terms as

O O
| _ Iik\l 0 L\-k"l +is a
2(v1) = exp pIp—H € bm -
m=1 R=1
0O R/=m 0
07 048 L+1 ¢ _
G +pm+ ) pngn(uR um)D
o A=t
0 _ LL+1
0 J§ +pm+ sgn (MR — Mm)
0 K R=1 0R
R/=
= " 00
= el oy
G P+ q, PRSINER —lm) 5
R/=m
_ s )
il — PR SgN (R — 1
J€k—pm + Rt m g
R/=m

This complicated looking (35) simplifies readily into a simple,
double-sided scalar integral over v,

L! .
o(va) = N {aim+j dimsgn (vi) } -e"Om " Vil +i &1,

m=1
(36)
This simplification is based on algebraic relations used in
the estimator’s measurement update process in [7], as well
as constants Dim, Dim, and D m defined as

Li+1

Dim - |v1] = PR [HR = U] (37a)
R=1,R/=
m
Dim-sgn(vi) = "(1 PRSYN (LR — Um) (37b)
R=1R/=
m
. i4q
Dim * sgn (v1) = PrSIN (MR — im) (37¢)
a Ri=1,R/=m
k* V1= & - Hm. (37d)

Denotel_theloq;er integral with respect to v, in (30) by
_X

m=1
—o0

l1 {aim +jdimsgn(v1)}

i
X exp —Dm - |IV1 |I+i§kV1 exp(—na |vi| +jX1v1)

2 \\
Xexp j \Zlﬁ,iBm{i’i dva
R=1
Li+1 ro°
N {aim+jdimsgn(vi)}
=m=1_OO
xexp — Dm+nu |
~ > <1\
+j & +x1+ - ZR BV, .
J§k X1 LD v dvi. (38)

R=1
This integral has a form identical to the measurement update
process for a scalar system [4]. Its solution is given by

'Nl zai,m _j di,mI
Ih = _ ~ M, ;
" g Fxa+ ZF:(_Bk,f< + Dm+m
Rl .
ai,m"'J di,mI
N 2 _R MR
K+ X1+ Z B — D+n I
= 2 MR
Ikl Qim pm + M —dim X1 4 zk,in,iﬂi
= 2 I, Rl
m=1 i 2 MR 2 2
®+x,+ ZR i + Dm+m
R=1 Pk
(39)
Finally, the conditional performance index in (30) is given by
L 1 ogm YN
) NN
3 5= M _2 \ 2 X
2 2 i
Dk 21 u2(i) + ¢; =1 m=1 -
i=k _ MR
ajm Dm + n - di,m X1 + ZR _B K.i
K. k.1 0
d | R (40)
H 2 g MR 2 2
A& + X1+ Zk,in,lk'I + Dm+m
R=1
This closed form conditional performance index is

non-convex and depends on the control input sequence
{u(k),...,u(p — 1)} in a complex way; specifically, the



parameters aim, dim, and X1 depend on the control sequence.
Thus, we maximize (40) numerically using the accelerated
gradient search method [14]. The optimization is done in two
steps: first, the global optimum of the double sum term in (40)
witlhout thelcontrol weighting terms is optimized with respect
to X1 X2 =X(p); then, that final state is used to generate
a control sequence as an initial guess for the second, local
accelerated gradient search optimization step.

VI.

Here, we present two sets of examples, the first of which
shows the optimal control u(0)* versus the measurement z(0)

for the first measurement update only, and the second set
shows two multi-step examples. All of these examples use
a two-step horizon, i.e. m = 2, so that there exists a control
sequence that can drive our two-state system to the origin over
this horizon length. However, as we are using model predictive
control, only the first control input of this sequence is applied
at that time step.

All of our examples compare our Cauchy optimal model
predictive controller with a similar LEG model predictive op-
timal controller. The LEG estimator assumes that the stochastic
inputs are described by the Gaussian pdfs that are closest, in
a least squared sense, to the given Cauchy pdfs; and the LEG
controller assumes that its objective functions of the state and
control resemble scaled Gaussian pdfs that are closest, in the
least-squared sense, to the scaled Cauchy pdfs in (10). The
LEG controllers’ responses are shown in dashed lines in the
figures.

The first set of examples are shown in Fig. 1. These
figures show the applied optimal control input at the first time
step, k = 0, given the first measurement. In the two cases
presented, all the systems parameters are the same, except in
Fig. 1(a) y > a1 = a2 (i.e. more measurement than state
uncertainty), and in Fig. 1(b) a1 = a2 > y (i.e. more state
than measurement uncertainty).

The example in Fig. 1(a) shows that the Cauchy controller
reduces its control effort to zero as the measurement deviations
become large. This is in contrast to the LEG controller, which
is linear and thus responds strongly to large measurement
deviations. This behavior in the Cauchy controller occurs
when the measurement uncertainty is larger than the state
uncertainty. In the opposite case shown in Fig. 1(b), the
measurement has less uncertainty than the state. In this case,
the Cauchy controller’s response closely matches that of the
LEG in a neighborhood of the origin, and in fact responds even
more strongly than the LEG for large measurement deviations.

The three different curves in both of these figures represent
the response for three different control weights: no control
weight, {o = 10, and {o = 5. As expected, heavier control
weights (i.e. smaller ¢) reduce the control effort, but even
without any control weighting, the response in Fig. 1(a) goes
to zero for large measurement deviations. The fact that this
behaviour is seen when there is no control weighting implies
that the attenuation of the control signal for large measurement
deviations is due to the cpdf and not the objective function.

NUMERICAL EXAMPLES

The complexity of evaluating the cost grows as the number
of terms increases across time steps, as indicated in (40). For
implementable control, this growth needs to be arrested. The
full information characteristic function of the ucpdf (25) is ap-
proximated by a characteristic function of a ucpdf conditioned
on a fixed sliding window of the most recent measurements,

taken here to have length eight. The relative error in the
approximation appears to be 1076 or smaller.

The second set of examples are shown in Fig. 2. All of the
plots show the state, control, and noise histories for the given
simulations. The difference between Fig. 2(a) and Fig. 2(b)
is that the process noise B and the measurement noise y
parameter values are interchanged.

It is interesting to compare Fig. 2(a) with Fig. 2(b) in
light of Fig. 1. In Fig. 2(a), there is more uncertainty in
the state process noise than in the measurement noise. When
large measurement deviations occur (such as at k = 52),
the Cauchy controller’s effort is very small. In contrast, the
LEG controller responds with a large control effort that drives
the states from their regulated state of zero. However, when
large process noise inputs occur, the state deviates and the
Cauchy controller applies a larger control effort than the LEG,
thus regulating the state more effectively. This suggests that
when the measurement noise density parameter dominates the
process noise density parameter in constructing the Cauchy
controller, the effect of measurement outliers is mitigated,
while still responding to state deviations due to process noise.

On the other hand, in Fig. 2(b) there is more uncertainty in
the state than in the measurement, and the Cauchy controller
behaves very much like the linear LEG controller. The state
trajectories and control inputs of the Cauchy and LEG con-
trollers appear equal, but actually their differences are much
smaller than the scale of the axis and cannot be seen. This
suggests that, when the stochastic parameters allow it, the
Cauchy controller follows the measurement more. It responds
in a more linear fashion to the measurements, imitating the
performance of the LEG controller in that setting.

This behavior is seen again when both controllers face
Gaussian noises, as in Figure 2(c). Here, the Cauchy controller
closely follows both the control and state trajectories of the
LEG, which is the true optimal solution. Hence, the Cauchy is
robust under non-impulsive noise environments, as it closely
approximates the true optimal solution given by the LEG.

VII. CONCLUSIONS

An optimal stochastic controller was derived for vector-
state, linear, discrete-time systems with additive process and
measurement Cauchy distributed noises. Since the Cauchy
distribution has an undefined mean and an infinite second
moment, we cannot use standard objective function, e.g., the
expected value of a quadratic function of state and control
variables. Therefore, a new and computable objective function
was defined. Opposed to previous work, the characteristic
function of the cpdf of the state given the measurement
history and the Parseval’s equation are used to express the
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Fig. 1. Parameters used are: n = [1 1], 8=0.02, TT=[11], AT=1[11],
and the eigenvalues of @ are 0.2455 #+j0.1523.

conditional performance index in a closed form. This closed-
form conditional performance index is optimized numeri-
cally using an accelerated gradient search. Examples are
presented that show how our vector state Cauchy controller
compares against an equivalent LEG controller, demonstrating
the Cauchy controller’s performance and improved robustness
over its Gaussian counterpart.
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Abstract—An optimal predictive controller for linear, vector-state
dynamic systems driven by Cauchy measurement and process noises is
developed. For the vector-state system, the probability density function
(pdf) of the state conditioned on the measurement history cannot be
generated. However, the characteristic function (CF) of this pdf can be
expressed in an analytic form. Consequently, the performance index
used for the controller design is evaluated in the spectral domain
using this CF. By taking the conditional expectation of an objective
function that is a product of functions resembling Cauchy pdfs, the
conditional performance index is obtained analytically in closed form by
using Parseval’s identity and integrating over the spectral vector. This
forms a deterministic, non-convex function of the control signal and the
measurement history that must be optimized numerically at each time
step. A two-state example is used to expose the interesting robustness
characteristics of the proposed controller.

I. INTRODUCTION

Control of dynamic systems in real world applications, from en-
gineering and science to economics and finance, frequently involves
handling uncertain, stochastic inputs. These uncertainties affect both
the actual state of the system as well as the measurements that
the controller depends on. When designing controllers for stochastic
systems, it is often assumed that the uncertainties are described by
Gaussian probability density functions (pdf), due to the efficiency
with which modern methods handle them. For linear systems, al-
gorithms like the linear quadratic Gaussian (LQG) and the linear
exponential Gaussian (LEG) assume linear dynamics and additive
process and measurement noises described by the Gaussian pdf [1].

In many applications the underlying random processes have an
impulsive character producing deviations of high amplitude and small
duration much more often than the Gaussian assumption permits
[2]. Examples of such processes include radar and sonar noise
[3] and disturbances due to air turbulence [4]. Another application
is adversarial missile guidance, where the target is intelligent and
desires to evade missile. In missile guidance, uncertainties are usually
assumed to be Gaussian. However, optimal target evasion maneuvers
involve high acceleration rate maneuvers, i.e. a high amplitude and
small duration input [5]. Hence, a control algorithm assuming that
the target is driven by a light tailed distribution would not capture
this behavior. The Gaussian distribution function has very light tails,
so that large deviations are extremely unlikely. Therefore, the LQG
(H,) and LEG (Hw) algorithms do not perform well in the presence
of heavy-tailed or impulsive uncertainties.

Impulsive uncertainties, like those mentioned in the examples
above, are better described by heavy-tailed distributions, such as
the symmetric alpha-stable (SaS) distributions [6]. These distribu-
tions are described not by their probability density functions (pdfs),
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but by their characteristic functions (CFs). They are of the form
o(v) = e % IVI“HFY where o is the scaling parameter, W is the
median, v is the spectral variable, and the characteristic exponent
a determines the type of distribution: a = 2 implies the Gaussian
distribution, and a = 1 implies the Cauchy distribution.

Estimation assuming Cauchy distributed noises has shown im-
proved performance over Gaussian estimators when faced with im-
pulsive noises. For estimating the direction of arrival of a signal
to a sensor array in [7], maximum likelihood estimators designed
assuming Cauchy distributed noises were shown to exhibit perfor-
mance very close to the Cramer-Rao Bound against SaS noises
with characteristic exponents 1 < a < 2. Similar performance was
observed in various applications, including processing data in a multi-
user communication network [8] and radar glint [9]. However, these
studies are only for estimation of the signal, or signal parameters,
and do not attempt to control their respective systems. This paper
derives a framework for control of multivariate linear systems driven
by Cauchy distributed measurement and process noises.

Algorithms for optimal estimation and control of scalar linear sys-
tems driven by Cauchy distributed process and measurement noises
have been developed in [10, 11]. There, the conditional performance
index for model predictive control is determined by taking the
conditional expectation of the objective function using the probability
density given the measurement history as presented in [11,12]. A
dynamic programming algorithm is also developed in [12]. It is
shown that the solution to the dynamic programming recursion is
intractable because of the need to average over future measurements
in determining the optimal return function. This cannot be done
in closed form due to the complex dependency of the optimal
return function on the measurement history. Hence, the dynamic
programming solution was approximated using the model predictive
control method.

In this paper, the Cauchy optimal control algorithm for scalar
systems [12] is extended to systems with a vector state. For the vector
case, the conditional pdf (cpdf) given the measurement history is not
available. However, the CF of the cpdf can be recursively propagated
for such vector state systems [13-17]. In particular, [16, 17] presents
an efficient algorithm for the two-state Cauchy estimator. Although
this control methodology can be applied to general vector-state
systems in [13, 14], the closed form expression for the conditional
performance index used in the control problem will be based on the
structure presented in [16,17].

The significant contribution of this paper is evaluating in closed
form the conditional performance index using the cpdf’s CF instead
of the cpdf as in [12]. Preliminary results can be found in [18].
The objective function is cast as a product of functions resembling
Cauchy pdfs, which are easily transformed into functions of the
spectral variables. Consequently, the conditional performance index,
found in a closed form, is a deterministic function of the control and
measurement histories. Due to its complexity, the optimal control
signal is determined by numerically optimizing this non-convex
conditional performance index in a model predictive control setting.

The remainder of the paper is structured as follows. The controlled
system model is presented in Section Il. An appropriate, computable
performance index for this problem is presented in Section Ill and
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subsequently transformed from the state variable to the spectral
variable form. In Section IV the spectral integrations required to
determine the conditional performance index are reduced to an
integral formula that can be evaluated in closed form. Section V
addresses a special case of systems with two states, using the efficient
algorithm presented in [17]. Here, using an alternative, simplified
form of the two state cpdf’s CF, the conditional performance is
determined in closed form. In Section VI numerical examples are
given, demonstrating the performance of the Cauchy controller under
both Cauchy and Gaussian noise conditions. Conclusions are given
in Section VII.

Il. DESCRIPTION OF THE MODEL
This paper deals with a discrete time, linear system described by
x(k + 1) = Ox(K) + Au(k) + M'w(k)
z(k) = Hx(k) + v(k)
where x(k) € R"is the state vector, u(k) is a scalar input, z(k)

1)

is a scalar measurement, and w(k) and v(Kk) are scalar independent
Cauchy distributed process and measurement noise inputs with me-
dians at zero and scaling parameters of 8 and y, respectively, so that

their pdfs are given by y /
i _ v/
fw w(k) = , fvov(k) = )

w (k) + B> Vi(K) +
The CFs of these pdfs are
pw(o) =€ oy (0)=e"", 3)

where o is the scalar spectral variable.
The initial conditions are assumed to be independent Cauchy
distributed random variables with the pdfs

N

ai/1r
fx; (x(1)) = — .
D)= @y a (4a)
Its CF is given by
()= "e !l
i=1 ai Vi +j)_‘i(l)vi' (4b)

where v; is an element of v € R".

The stochastic system (1) can be decomposed into two systems,
one driven by u(k) and one by w(k), by exploiting the linearity
of the system. Let x(k) and z(k) be the part of the system driven
by the input u(k) only, and X(k) and Z(k) be the part of the system
driven by the process noise w(k) only and contains all the underlying
random variables. Then,

x(k) = x(k) +X(k) (52)
z(k) = z(k) + Z(k). (5b)
The controlled part of the system is described by
X(k + 1) = Ox(k) + Au(k) (6a)
z(k) = Hx (k) (6b)

with initial condition X (1), i.e., the median of (4a). The process noise
driven part is given by

K(k + 1) = OX(K) + Mw(k) (7a)

Z(k) = HX(K) + v(K). (7b)

The process and measurements noise pdfs were defined in (2), while

the initial condition of this stochastic model is Cauchy distributed
with a pdf given by

fr, ®(@) =" g a/m (8a)

Its CF is
n
N
oz, (v) =
i=1

e~ailvil ] (8b)

The above decomposition will be used to derive the Cauchy con-
troller.

I11. DERIVATION OF THE COST USING CHARACTERISTIC
FUNCTIONS

Our proposed controller is an m-step model predictive controller
[19] that uses current and past measurements, and averages over
future process noise. At each time step, the conditional performance
index is computed. Since the performance index was found to be
a non-convex function of the control sequence, it is maximized
numerically. Once the optimal control sequence of length m is
computed, only the first control in that sequence is applied. At the
next step, a new measurement is taken and the process is repeated,
producing a new optimal control sequence and applying only the first
one. In this paper, we study the optimal stochastic state regulation
problem, noting that the tracking problem can be handled in a similar
fashion. Our regulation problem will have a finite horizon of length
m such that the terminal state occurs at time-step p = k +m.

Let the state, measurement, and control histories used in the control
problem formulation be defined as

Xp = {x(k+1),...,x(p)} (9a)
pg.i =4{Z(1),...,Z(k)}, o (9b)
Uc ={uk),...,up—1)} U, €F, (9c)

where _ is the class of piecewise continuous functions adapted to the

o-algebra ok generated by the measurement history, i.e. the control
is a random variable that is measurable with respect to events in o«

[20]. Moreover, in [12] it is proven that u is adapted to the o-algebra
k

Ok generated by Ek, Wwhich means that the control is measurable on
events generated by ~, only.

Similar to the scalar control problem presented in [11, 12], the con-
trol objective function is chosen as a product of functions resembling
Cauchy pdfs, given by

p p—1
w Xk+11Ukp—1( n \
N (i/n N r/i+ r/rr
= u2(i) + &2 x2(i + 1) 2 (10)
i=—k o= T i+1,r

Then, the the performance index conditioned on the current mea-
surement history and averaged over future process noises is given by
|
kp = mMmax EI IpwUlg_l
J* p-1 v x
Uy eF

max g E ¢ X° ,UP!

UPler k+1 k
Zk

(11)

E max g W XP Up_l
K )
UP-lef k+1 k k

where the interchange of the maximum and expectation operations is
due to the fundamental theorem [1].
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conditional performance index J - , where using (10) it becomes

Zk
J- =E W P p—1 ~
Z XU Zx <
- O/
_ ﬁi . I
=E " le,r T ) 5 g )y 2
i=k r=(1 i+ +ni,, u@®+E \
1°p—1 % n N, . /T ¢/
_ Nn N T ) 2
i=k r=1 r(|+l)+rl|+1r u(i)+(i

X (X(P)IK(p — D).

X fx 1 z(X(K+1)| ZYdK (K +1)...d%n(k + 1)
x dX (K +2)...d%n(k +2)...dX(p). .. dXn(p).

fw (X(k +2) |X(k + 1))

(12)

For presentation simplicity, in this derivation we will only consider

weigpstmphgnc(t)ig] € Oﬂvielnzahﬁ%tg fi)i(FPc)[Io and I\%’ théirmlscalar control

i=k TZ@H¢Z
come out of the integral in %12) Then, the product over i |n5|de the
integrand has only the termfori=p— 1. For notational convenience

we can drop the time-step index in this integral and write it over

{X1,...,Xn} as
\
(N -
J- =MYn M./ f- - TOd%i...d%s
“i r=1 Xr +Xr °+n, xp12(X1Z
o )
MY R(R+%)-fx - (X]2)dK1 .. . dXo. (13)
plZk 4

The cpdf f>~<p| - (X ~k) can be evaluated in closed form for scalar

Z
Zk
systems [10]. However, for vector state systems only the CF of
the cpdf in (13), @pk(v), can be evaluated in closed form [13].
Therefore, when computing the conditional performance index we
need to express the integral using the spectral variable v instead of

the pdf variable X. The CF is the inverse Fourier transform of a

pdf, and therefore CFs retain all the properties of Fourier transforms.

Hence, we use the same transform on the objective function Ry in
(13), and then apply Parseval’s identity. The inverse Fourier transform

of Rx in (13) is denoted Ly and given by

400
r

n
L(V) = R&+X)e"Txgg ="'

—co r=1

e Mor [ve| = jXr (14)

Using these definitions, we can apply Parseval’s identity over each
variable in (13) to express the conditional performance index as an
integral over the spectral variable v,

M
J- = v LX(V) - @pik(v) dvi ...
dvn
el
P B N
= My TP e+ XAPVE @y (V) dvi <. . dvi,
emr |

(15)

IV. THE CONDITIONAL PERFORMANCE INDEX
Consider the integral over v, in (15),
\

= Cm
In = . e Merl(Erv)l ej(i(p),v)(pmk(v)dvn
I n

- Np,r [ (Er,v) 1+i(Xp),v)
= e r=l1

—oo

@pik(V)dvn, (16)

where E; is the r' column of the n-dimensional identity matrix. The

Eggséﬂ iba st dokis denoted as f>?k|2 The unnormalized cpdf

=Ty 7 T~ . where f- isthe pdf of
the measurement histor))(/kfinzd has & Kifown ¥4lue. In [lf 4], the%F of

the ucpdf ¢ k/(v) isrecursn//ie;iy propagated the-CF of the normalized

cpdf is @il . wi eref <P” “(V) v=0. From
[13,14] the form of the CF of the ucpdf at time k |s shown to be
_ nélk » yk{k(V)
Px= g (Ye(V)e ; (17a)
i=1
where
- «  \
) = a'fsgn Ak v e R (17b)
£=1
Kk 7 N/ N\
kpk o Kk
vel (V) =— pil @ v+ b v, (17¢)
£=1
and the parameters rli(tlk, nkelvik, qli;lk, p:;lk, a:;lk, blflk are generated

sequentially from k = 1.

For the MPC algorithm, the CF of the ucpdf is to be propagated
through the stochastic dynamics (7) to time k + m = p using
the propagation formula given in [13,17]. The CF of the m-step

plk
pro_pagated cpdf is denoted ¢  (v) and given by

(V) =

;{ - ™ W m— T T

o (@ " "
T Ve (@ ) g (D) Ve (Tv)
14 « "

_ K|k mT vl ™Tv)y
9 a(@ e \
= o™, v

xexp —pB == BI(@T, V)| =BT, V)]

(18)

In (18) we effectively add m terms to the sum in yé'ik(v) of (17c).
By combining the exponent in (16) with that in (18), the combined
exponent in the integrand of (16) has in total ngi'k+m+n real terms,
while the imaginary part is composed of two components. Define the
following terms

Pie = pie,  zkIk = mgklk forR=1,...,nk“‘
i£ i£ i
_ ,B R 1. ka
Pe =B, Kk — gt = Nei
4 =T fort—R (nklk+ 1)  (19)
Be=rpe, a=E  for R=1,....n
i£ k|k
r=R-(ng +m)
and  _
bklk k|k _ k|k k|k
i SR tXe, Ne =N +m+r1(Ik (19b)
ge =0 forR=ngy +1,...,Nng

Using these definitions, the integrand in (16) becomes

k/k k/k t
n/ n /



k/k
here L} is th lex conjugate of Lx. The next section sh ° & g Mo e
where Ly is the complex conjugate of Lx. The next section shows V) = V) = — .
how to e\);aluate these n nested integrals sequentially in closed form. v i:qu( ) ; 9 i Vg (V) -e ’ (202)



where

T N\

)= altson gy (20b)
£=1
“l/ Kk

Wlk < ka/ K|k \ kK

o (V)= Pe ac,v FI1 bg,v (20c)
£=1

'I"he.integrfaltion in (16) is performedIonr eacrllTeIg\mgpé of \cingun.
Beginning with v,,, decompose v = V v
Then,

re° ro I %k/k e
In = w(v)dv =

—oo —0Q | —o0 —oo
ik a

> g I°
= ... 1 wi(v, P)dva [ d?.
i=1

The objective is to reduce the inner integral in (21) to a form that
is obtained in closed form using the integral formula developed in
[13,14]. First, since Eikﬁ'k multiplies v in the sign function in (20b)

and the absolute value. function_ig,(20c), they are decomposed as
sklk — sklk _klk —, where @ | n—1

wi(v)ydv

(21)

QG — Qg 7, ie 1s a scalar and ai'g “e R
Therefore, the inner products in (20b) an% (20c) begome

/ ~klk =

adky = 807~ —av, 22)

In order to rewrite (22) in a form consistent with the integral

formula in [13,14], —@&, is fagtored out of the second term. If
& = 0, then the term e a;".v loses dependence on v, and it is
A

removed from the inner integral in (21). Therefore, only ?a‘i‘}_'k /=

0
needs to bé considédved. Let (22) b& rewrit\eE as \
akIk KlK uk|k
£

i£ vV =& san -l noo (232)
a/k

where pikﬁ“‘ = - i—Nk—/k,V . Therefore, the elements in (20b) and

(20c) are N ( \
gkl (/4<| N\ K|k , (23b)

i QN Aig ,V\ =0g sgn Hig — Vn
I§<Ik _klk klk  klk
i£ f‘iE VN =pe Hie —wvn, (23c)
where (qu = qk'ksgn - and pk'k = pka ik, Using these
i£ i£ i£ i£ i£ i£
definitions, the inner integral of (21) is restated as
0 0
re° _ nklk
wi(v)dva =e!~9i,k‘v\roo ki@ ik ( Kk \
0 Geson wg -v, ©
— oo —oo £=1
| 0
F&k
O KIk | |k klk [
X ex ~
pj p i H e —Vn +jb Ve dva.  (24)
£=1

The convolution integral in (24) is shown i_q(LlS, 14] to have a closed
form solution composed as a sum with n terms, each of which
is structurally similar to the terms in wi(v). That is, there will be a
new g function which is a function of signs of inner products of V.

Therefore, this integration process can be repeated until all of the
integrals are taken, and a closed form solution of the conditional
performance index is determined. For a vector state system of general
order n, a closed form analytical solution is not attainable due to the
complexity of the coefficient functions g‘?“‘. However, a closed form
expression for the conditional performance index can be obtained for
a two-state system, presented next, by using the structure from [17].

V. THE CONDITIONAL PERFORMANCE INDEX FOR A SECOND
ORDER SYSTEM

Now, let us limit our discussion to a second order system, i.e.,
n = 2, in order to use the structure for the cpdf’s CF presented
in [16]. This alternate, two state structure for the CF of the cpdf
takes advantage of relationships not yet generalized to the general
vector-state case that drastically reduces the number of terms needed
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representation for the g:(“‘ coefficient functions in (17a).

The structure for the CF for the ucpdf is given by
( ka(V) =

N 0 0
< 0 &, (.m0
Gik(v) - exp O— Pi BV +] 0

i=1 £=1 £=1
(25)

which consists of a sum of Ny similar terms. By using the
efficient algorithm presented in [17] instead of the general vector-state
algorithm from [13], the number of terms needed to express the cdpf’s
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so significantly improves
Each of these terms is a product of a coefficient function Gi (V)
and an exponential function whose argument involves a sum of
absolute values equjvalent to (17c?. In the exponential argument:
there is a sum of L' absolute value terms; the P* and Z* values
K|k im
represent real, scalallr constants where P£ > 0; the BMisare 1 x 2
i K|k
row vectors, called the fundamental directions; and the M'Ei represent
integers that index the fundamental directions that multiply v. The
parameters for the two-state estimator are constructed recursively in
the measurement update process, as described in [16]. All of these

parame